Проецирование точки на три плоскости проекций. Построение ортогональных проекций точек Проецирование точки примеры

При прямоугольном проецировании система плоскостей проекций представляет собой две взаимно перпендикулярные плоскости проекций (рис. 2.1). Одну условились располагать горизонтально, а другую - вертикально.

Плоскость проекций, расположенную горизонтально, называют горизонтальной плоскостью проекций и обозначают щ, а плоскость, ей перпендикулярную, - фронтальной плоскостью проекций л 2 . Саму систему плоскостей проекций обозначают п/п 2 . Обычно употребляют сокращенные выражения: плоскость Л[, плоскость п 2 . Линию пересечения плоскостей щ и к 2 называют осью проекций ОХ. Она делит каждую плоскость проекций на две части - полы. Горизонтальная плоскость проекций имеет переднюю и заднюю, а фронтальная - верхнюю и нижнюю полы.

Плоскости щ и п 2 делят пространство на четыре части, называемые четвертями и обозначаемые римскими цифрами I, II, III и IV (см. рис. 2.1). Первой четвертью называют часть пространства, ограниченную верхней полой фронтальной и передней полой горизонтальной плоскостей проекций. Для остальных четвертей пространства определения аналогичны предыдущему.

Все машиностроительные чертежи представляют собой изображения, построенные на одной плоскости. На рис. 2.1 система плоскостей проекций является пространственной. Для перехода к изображениям на одной плоскости условились совмещать плоскости проекций. Обычно плоскость п 2 оставляют неподвижной, а плоскость П поворачивают по направлению, указанному стрелками (см. рис. 2.1), вокруг оси ОХ на угол 90° до совмещения ее с плоскостью п 2 . При таком повороте передняя пола горизонтальной плоскости опускается вниз, а задняя поднимается вверх. После совмещения плоскости имеют вид, изобра-

женный на рис. 2.2. Считают, что плоскости проекций непрозрачны и наблюдатель всегда находится в первой четверти. На рис. 2.2 обозначение невидимых после совмещения пол плоскостей взято в скобки, как это принято для выделения на чертежах невидимых фигур.

Проецируемая точка может находиться в любой четверти пространства или на любой плоскости проекций. Во всех случаях для построения проекций через нее проводят проецирующие прямые и находят точки встречи их с плоскостями 711 и 712, которые и являются проек- циями.

Рассмотрим проецирование точки, расположенной в первой четверти. Заданы система плоскостей проекций 711/712 и точка А (рис. 2.3). Через нее проводят две прямые ЛИНИИ, перпендикулярные ПЛОСКОСТЯМ 71) И 71 2 . Одна из них пересечет плоскость 711 в точке А ", называемой горизонтальной проекцией точки А, а другая - плоскость 71 2 в точке А ", называемой фронтальной проекцией точки А.

Проецирующие прямые АА " и АА " определяют плоскость проецирования а. Она перпендикулярна плоскостям Кип 2 , так как проходит через перпендикуляры к ним и пересекает плоскости проекций по прямым А "Ах и А "А х. Ось проекций ОХ перпендикулярна плоскости ос, как линия пересечения двух плоскостей 71| и 71 2 , перпендикулярных третьей плоскости (а), а следовательно, и любой прямой, лежащей в ней. В частности, 0X1А"А х и 0X1А "А х.

При совмещении плоскостей отрезок А "А х, расположенный на плоскости к 2 , остается неподвижным, а отрезок А "А х вместе с плоскостью 71) будет повернут вокруг оси ОХ до совмещения с плоскостью 71 2 . Вид совмещенных плоскостей проекций вместе с проекциями точки А приведен на рис. 2.4, а. После совмещения точки А ", А х и А " окажутся расположенными на одной прямой, перпендикулярной оси ОХ. Отсюда следует вывод, что две проекции одной и той же точки



лежат на общем перпендикуляре к оси проекции. Этот перпендикуляр, соединяющий две проекции одной и той же точки, называют линией проекционной связи.

Чертеж на рис. 2.4, а можно значительно упростить. Обозначения совмещенных плоскостей проекций на чертежах не отмечают и прямоугольники, условно ограничивающие плоскости проекций, не изображают, так как плоскости безграничны. Упрощенный чертеж точки А (рис. 2.4, б) называют также эпюром (от франц. ?pure - чертеж).

Изображенный на рис. 2.3 четырехугольник AE4 "А Х А " является прямоугольником и его противоположные стороны равны и параллельны. Поэтому расстояние от точки А до плоскости П , измеряемое отрезком АА ", на чертеже определяется отрезком А "А х. Отрезок же А "А х = АА" позволяет судить о расстоянии от точки А до плоскости к 2 . Таким образом, чертеж точки дает полное представление о ее расположении относительно плоскостей проекций. Например, по чертежу (см. рис. 2.4, б) можно утверждать, что точка А расположена в первой четверти и удалена от плоскости п 2 на меньшее расстояние, чем от плоскости тс ь так как А "А х А "А х.

Перейдем к проецированию точки во второй, третьей и четвертой четвертях пространства.


При проецировании точки В, расположенной во второй четверти (рис. 2.5), после совмещения плоскостей обе ее проекции окажутся выше оси ОХ.

Горизонтальная проекция точки С, заданной в третьей четверти (рис. 2.6), расположена выше оси ОХ, а фронтальная - ниже.

Точка Д изображенная на рис. 2.7, расположена в четвертой четверти. После совмещения плоскостей проекций обе ее проекции окажутся ниже оси ОХ.

Сравнивая чертежи точек, находящихся в разных четвертях пространства (см. рис. 2.4-2.7), можно заметить, что для каждой характерно свое расположение проекций относительно оси проекций ОХ.

В частных случаях проецируемая точка может лежать на плоскости проекций. Тогда одна ее проекция совпадает с самой точкой, а другая будет расположена на оси проекций. Например, для точки Е, лежащей на плоскости щ (рис. 2.8), горизонтальная проекция совпадает с самой точкой, а фронтальная находится на оси ОХ. У точки Е, расположенной на плоскости к 2 (рис. 2.9), горизонтальная проекция на оси ОХ, а фронтальная совпадает с самой точкой.

Точка, как математическое понятие, не имеет размеров. Очевидно, если объект проецирования является нульмерным объектом, то говорить о его проецировании бессмысленно.

Рис.9 Рис.10

В геометрии под точкой целесообразно принимать физический объект, имеющий линейные измерения. Условно за точку можно принять шарик с бесконечно малым радиусом. При такой трактовке понятия точки можно говорить о ее проекциях.

При построении ортогональных проекций точки следует руководствоваться первым инвариантным свойством ортогонального проецирования: ортогональная проекция точки есть точка.

Положение точки в пространстве определяется тремя координатами: X, Y, Z, показывающие величины расстояний, на которые точка удалена от плоскостей проекций. Чтобы определить эти расстояния, достаточно определить точки встречи этих прямых с плоскостями проекций и измерить соответствующие величины, которые укажут соответственно значения абсциссы X , ординаты Y и аппликаты Z точки (рис. 10).

Проекцией точки является основание перпендикуляра, опущенного из точки на соответствующую плоскость проекций. Горизонтальной проекцией точки а называют прямоугольную проекцию точки на горизонтальной плоскости проекций, фронтальной проекцией а / – соответственно на фронтальной плоскости проекций и профильной а // – на профильной плоскости проекций.

Прямые Аа, Аa / и Аa // называются проецирующими прямыми. При этом прямую Аа, проецирующую точку А на горизонтальную плоскость проекций, называют горизонтально- проецирующей прямой, Аa / и Аa // - соответственно: фронтально и профильно-проецирущими прямыми.

Две проецирующие прямые, проходящие через точку А определяют плоскость, которую принято называть проецирующей.

При преобразовании пространственного макета, фронтальная проекция точки А – а / остается на месте, как принадлежащая плоскости, которая не менят своего положения при рассматриваемом преобразовании. Горизонтальная проекция – а вместе с горизонтальной плоскостью проекции повернется понаправлению движения часовой стрелки и расположится на одном перепендикуляре к оси Х с фронтальной проекцией. Профильная проекция - a // будет вращаться вместе с профильной плоскостью и к концу преобразования займет положение, указанное на рисунке 10. При этом - a // будет принадлежать перпендикуляру к оси Z , проведенному из точки а / и будет удалена от оси Z на такое же расстояние, на какое горизонтальная проекция а удалена от оси Х . Поэтому связь между горизонтально и профильной проекциями точки может быть установлена с помощью двух ортогональных отрезков аа y и а y a // и сопрягающей их дуги окружности с центром в точке пересечения осей (О – начало координат). Отмеченной связью пользуются для нахождения недостающей проекции (при двух заданных). Положение профильной (горизонтальной) проекции по заданным горизонтальной (профильной) и фронтальной проекциям может быть найдено с помощью прямой, проведенной под углом 45 0 из начала координат к оси Y (эту биссектрису называют прямой k – постоянной Монжа). Первый из указанных способов предпочтителен, как более точный.


Из этого следует:

1. Точка в пространстве удалена:

от горизонтальной плоскости H Z,

от фронтальной плоскости V на величину заданной координаты Y,

от профильной плоскости W на величину координаты.X.

2. Две проекции любой точки принадлежат одному перпендикуляру (одной линии связи):

горизонтальная и фронтальная – перпендикуляру к оси X,

горизонтальная и профильная – перпендикуляру к оси Y,

фронтальная и профильная – перпендикуляру к оси Z.

3. Положение точки в пространстве вполне определяется положением ее двух ортогональных проекций. Из этого следует – по двум любым заданным ортогональным проекциям точки всегда иожно построить недостающую ее третью проекцию.

Если точка имеет три определенные координаты, то такую точку называют точкой общего положения. Если у точки одна или две координаты имеют нулевое значение, то такую точку называют точкой частного положения.

Рис. 11 Рис. 12

На рисунке 11 дан пространственный чертеж точек частного положения, на рисунке 12 – комплексных чертеж (эпюр) этих точек. Точка А принадлежит фронтальной плоскости проекций, точка В – горизонтальной плоскости проекций, точка С – профильной плоскости проекций и точка D – оси абсцисс (Х ).

Алгебраическая проекция вектора на какую-либо ось равна произведению длины вектора на косинус угла между осью и вектором:

Пр a b = |b|cos(a,b) или

Где a b - скалярное произведение векторов , |a| - модуль вектора a .

Инструкция . Для нахождения проекции вектора Пp a b в онлайн режиме необходимо указать координаты векторов a и b . При этом вектор может быть задан на плоскости (две координаты) и в пространстве (три координаты). Полученное решение сохраняется в файле Word . Если векторы заданы через координаты точек, то необходимо использовать этот калькулятор .

Классификация проекций вектора

Виды проекций по определению проекция вектора

  1. Геометрическая проекция вектора AB на ось (вектор) называется вектор A"B" , начало которого A’ есть проекция начала A на ось (вектор), а конец B’ – проекция конца B на ту же ось.
  2. Алгебраическая проекция вектора AB на ось (вектор) называется длина вектора A"B" , взятая со знаком + или - , в зависимости от того, имеет ли вектор A"B" то же направление, что и ось (вектор).

Виды проекций по системе координат

Свойства проекции вектора

  1. Геометрическая проекция вектора есть вектор (имеет направление).
  2. Алгебраическая проекция вектора есть число.

Теоремы о проекциях вектора

Теорема 1 . Проекция суммы векторов на какую-либо ось равна проекции слагаемых векторов на ту же ось.

AC" =AB" +B"C"


Теорема 2 . Алгебраическая проекция вектора на какую-либо ось равна произведению длины вектора на косинус угла между осью и вектором:

Пр a b = |b|·cos(a,b)

Виды проекций вектора

  1. проекция на ось OX.
  2. проекция на ось OY.
  3. проекция на вектор.
Проекция на ось OX Проекция на ось OY Проекция на вектор
Если направление вектора A’B’ совпадает с направлением оси OX, то проекция вектора A’B’ имеет положительный знак.
Если направление вектора A’B’ совпадает с направлением оси OY, то проекция вектора A’B’ имеет положительный знак.
Если направление вектора A’B’ совпадает с направлением вектора NM, то проекция вектора A’B’ имеет положительный знак.
Если направление вектора противоположно с направлением оси OX, то проекция вектора A’B’ имеет отрицательный знак.
Если направление вектора A’B’ противоположно с направлением оси OY, то проекция вектора A’B’ имеет отрицательный знак.
Если направление вектора A’B’ противоположно с направлением вектора NM, то проекция вектора A’B’ имеет отрицательный знак.
Если вектор AB параллелен оси OX, то проекция вектора A’B’ равна модулю вектора AB.

Если вектор AB параллелен оси OY, то проекция вектора A’B’ равна модулю вектора AB.

Если вектор AB параллелен вектору NM, то проекция вектора A’B’ равна модулю вектора AB.

Если вектор AB перпендикулярен оси OX, то проекция A’B’ равна нулю (нуль-вектор).

Если вектор AB перпендикулярен оси OY, то проекция A’B’ равна нулю (нуль-вектор).

Если вектор AB перпендикулярен вектору NM, то проекция A’B’ равна нулю (нуль-вектор).

1. Вопрос: Может ли проекция вектора иметь отрицательный знак. Ответ: Да, проекций вектора может быть отрицательной величиной. В этом случае, вектор имеет противоположное направление (см. как направлены ось OX и вектор AB)
2. Вопрос: Может ли проекция вектора совпадать с модулем вектора. Ответ: Да, может. В этом случае, векторы параллельны (или лежат на одной прямой).
3. Вопрос: Может ли проекция вектора быть равна нулю (нуль-вектор). Ответ: Да, может. В этом случае вектор перпендикулярен соответствующей оси (вектору).

Пример 1 . Вектор (рис. 1) образует с осью OX (она задана вектором a) угол 60 о. Если OE есть единица масштаба, то |b|=4, так что .

Действительно, длина вектора (геометрической проекции b) равна 2, а направление совпадает с направлением оси OX.

Пример 2 . Вектор (рис. 2) образует с осью OX (с вектором a) угол (a,b) = 120 o . Длина |b| вектора b равна 4, поэтому пр a b=4·cos120 o = -2.

Действительно, длина вектора равна 2, а направление противоположно направлению оси.

Будет построена, когда будет восстановлен перпендикуляр к данной плоскости, проходящий через точку и построена точка пересечения перпендикуляра с плоскостью:
Прямая и плоскость ;
Пересечение прямой с плоскостью

Будет построена, когда будет восстановлен перпендикуляр к данной плоскости, опущенный из точки на плоскость и построена точка пересечения перпендикуляра с плоскостью. Эти построения выполняются когда определяется расстояние от точки до плоскости способом прямоугольного треугольника.

Даны проекции: точки A (A`, A" ) и плоскости α (α H , α V ). Найти расстояние от точки A до плоскости α способом прямоугольного треугольника.

HTML код таблицы, примеры

Строится в графической работе №2 задача №4 для двух точек отрезка EF : Графическая работа 2

Построить эпюр точки B симметричной A относительно прямой m

Здесь показан один из многих путей решения данной задачи.
1. Используем косоугольное проецирование с направлением S параллельным заданной прямой m:
a) Через точку A проводим прямую n и находим следы nH, mH и nV, mV;
b) находим следы плоскости α по следам параллельных прямых ее образующих nH, mH и nV, mV;
c) находим следы kH и kV прямой k симметричной относительно прямой m на одноименных следах плоскости α.
2. Через точку A проводим плоскость β перпендикулярную параллельным прямым m, n и k плоскости α:
a) Через точку A проводим горизонталь и фронталь плоскости β;
b) Находим следы горизонтали и фронтали плоскости β;
c) Проводим следы плоскости β через следы ее горизонтали h и фронтали f.
3. Находим точку B встречи прямой k с плоскостью β:
a) Находим линию пересечения 1 - 2 плоскостей α и β;
b) Находим искомую точку B в пересечении линии 1-2 с прямой k.

Рассмотрим проекции точек на две плоскости, для чего возьмем две перпендикулярные плоскости (рис. 4), которые будем называть горизонтальной фронтальной и плоскостями. Линию пересечения данных плоскостей называют осью проекций. На рассмотренные плоскости спроецируем одну точку А с помощью плоской проекции. Для этого необходимо опустить из данной точки перпендикуляры Аа и A на рассмотренные плоскости.

Проекцию на горизонтальную плоскость называют горизонтальной проекцией точки А , а проекцию а? на фронтальную плоскость называют фронтальной проекцией .


Точки, которые подлежат проецированию, в начертательной геометрии принято обозначать с помощью больших латинских букв А, В, С . Для обозначения горизонтальных проекций точек применяют малые буквы а, b, с … Фронтальные проекции обозначают малыми буквами со штрихом вверху а?, b?, с?

Применяется также и обозначение точек римскими цифрами I, II,… а для их проекций – арабскими цифрами 1, 2… и 1?, 2?…

При повороте горизонтальной плоскости на 90° можно получить чертеж, в котором обе плоскости находятся в одной плоскости (рис. 5). Данная картина называется эпюром точки .


Через перпендикулярные прямые Аа и Аа? проведем плоскость (рис. 4). Полученная плоскость является перпендикулярной фронтальной и горизонтальной плоскостям, потому что содержит перпендикуляры к этим плоскостям. Следовательно, данная плоскость перпендикулярна линии пересечения плоскостей. Полученная прямая пересекает горизонтальную плоскость по прямой аа х, а фронтальную плоскость – по прямой а?а х. Прямые аах и а?а х являются перпендикулярными оси пересечения плоскостей. То есть Аааха? является прямоугольником.

При совмещении горизонтальной и фронтальной плоскостей проекции а и а? будут лежать на одном перпендикуляре к оси пересечения плоскостей, так как при вращении горизонтальной плоскости перпендикулярность отрезков аа х и а?а х не нарушится.

Получаем, что на эпюре проекции а и а? некоторой точки А всегда лежат на одном перпендикуляре к оси пересечения плоскостей.

Две проекции а и а? некоторой точки А могут однозначно определить ее положение в пространстве (рис. 4). Это подтверждается тем, что при построении перпендикуляра из проекции а к горизонтальной плоскости он пройдет через точку А. Точно так же перпендикуляр из проекции а? к фронтальной плоскости пройдет через точку А , т. е. точка А находится одновременно на двух определенных прямых. Точка А является их точкой пересечения, т. е. является определенной.

Рассмотрим прямоугольник Aaa х а? (рис. 5), для которого справедливы следующие утверждения:

1) Расстояние точки А от фронтальной плоскости равно расстоянию ее горизонтальной проекции а от оси пересечения плоскостей, т. е.

Аа? = аа х;

2) расстояние точки А от горизонтальной плоскости проекций равно расстоянию ее фронтальной проекции а? от оси пересечения плоскостей, т. е.

Аа = а?а х.

Иначе говоря, даже без самой точки на эпюре, используя только две ее проекции, можно узнать, на каком расстоянии от каждой из плоскостей проекций находится данная точка.

Пересечение двух плоскостей проекций разделяет пространство на четыре части, которые называют четвертями (рис. 6).

Ось пересечения плоскостей делит горизонтальную плоскость на две четверти – переднюю и заднюю, а фронтальную плоскость – на верхнюю и нижнюю четверти. Верхнюю часть фронтальной плоскости и переднюю часть горизонтальной плоскости рассматривают как границы первой четверти.


При получении эпюра вращается горизонтальная плоскость и совмещается с фронтальной плоскостью (рис. 7). В этом случае передняя часть горизонтальной плоскости совпадет с нижней частью фронтальной плоскости, а задняя часть горизонтальной плоскости – с верхней частью фронтальной плоскости.


На рисунках 8-11 показаны точки А, В, С, D, располагающиеся в различных четвертях пространства. Точка А расположена в первой четверти, точка В – во второй, точка С – в третьей и точка D – в четвертой.


При расположении точек в первой или четвертой четвертях их горизонтальные проекции находятся на передней части горизонтальной плоскости, а на эпюре они лягут ниже оси пересечения плоскостей. Когда точка расположена во второй или третьей четверти, ее горизонтальная проекция будет лежать на задней части горизонтальной плоскости, а на эпюре будет находиться выше оси пересечения плоскостей.


Фронтальные проекции точек, которые расположены в первой или второй четвертях, будут лежать на верхней части фронтальной плоскости, а на эпюре будут находиться выше оси пересечения плоскостей. Когда точка расположена в третьей или четвертой четверти, ее фронтальная проекция – ниже оси пересечения плоскостей.

Чаще всего при реальных построениях фигуру располагают в первой четверти пространства.

В некоторых частных случаях точка (Е ) может лежать на горизонтальной плоскости (рис. 12). В этом случае ее горизонтальная проекция е и сама точка будут совпадать. Фронтальная проекция такой точки будет находиться на оси пересечения плоскостей.

В случае, когда точка К лежит на фронтальной плоскости (рис. 13), ее горизонтальная проекция k лежит на оси пересечения плоскостей, а фронтальная k? показывает фактическое местонахождение этой точки.


Для подобных точек признаком того, что она лежит на одной из плоскостей проекций, служит то, что одна ее проекция находится на оси пересечения плоскостей.

Если точка лежит на оси пересечения плоскостей проекций, она и обе ее проекции совпадают.

Когда точка не лежит на плоскостях проекций, она называется точкой общего положения . В дальнейшем, если нет особых отметок, рассматриваемая точка является точкой общего положения.

2. Отсутствие оси проекций

Для пояснения получения на модели проекций точки на перпендикулярные плоскости проекций (рис. 4) необходимо взять кусок плотной бумаги в форме удлиненного прямоугольника. Его нужно согнуть между проекциями. Линия сгиба будет изображать ось пересечения плоскостей. Если после этого согнутый кусок бумаги вновь расправить, получим эпюр, похожий на тот, что изображен на рисунке.

Совмещая две плоскости проекций с плоскостью чертежа, можно не показывать линию сгиба, т. е. не проводить на эпюре ось пересечения плоскостей.

При построениях на эпюре всегда следует располагать проекции а и а? точки А на одной вертикальной прямой (рис. 14), которая перпендикулярна оси пересечения плоскостей. Поэтому, даже если положение оси пересечения плоскостей остается неопределенным, но ее направление определено, ось пересечения плоскостей может находиться на эпюре только перпендикулярно прямой аа? .


Если на эпюре точки нет оси проекций, как на первом рисунке 14 а, можно представить положение этой точки в пространстве. Для этого проведем в любом месте перпендикулярно прямой аа? ось проекции, как на втором рисунке (рис. 14) и согнем чертеж по этой оси. Если восстановить перпендикуляры в точках а и а? до их пересечения, можно получить точку А . При изменении положения оси проекций получаются различные положения точки относительно плоскостей проекций, но неопределенность положения оси проекций не влияет на взаимное расположение нескольких точек или фигур в пространстве.

3. Проекции точки на три плоскости проекций

Рассмотрим профильную плоскость проекций. Проекции на две перпендикулярные плоскости обычно определяют положение фигуры и дают возможность узнать ее настоящие размеры и форму. Но бывают случаи, когда двух проекций оказывается недостаточно. Тогда применяют построение третьей проекции.

Третью плоскость проекции проводят так, чтобы она была перпендикулярна одновременно обеим плоскостям проекций (рис. 15). Третью плоскость принято называть профильной .

В таких построениях общую прямую горизонтальной и фронтальной плоскостей называют осью х , общую прямую горизонтальной и профильной плоскостей – осью у , а общую прямую фронтальной и профильной плоскостей – осью z . Точка О , которая принадлежит всем трем плоскостям, называется точкой начала координат.


На рисунке 15а показана точка А и три ее проекции. Проекцию на профильную плоскость (а?? ) называют профильной проекцией и обозначают а?? .

Для получения эпюра точки А, которая состоит из трех проекций а, а а , необходимо разрезать трехгранник, образующийся всеми плоскостями, вдоль оси у (рис. 15б) и совместить все эти плоскости с плоскостью фронтальной проекции. Горизонтальную плоскость необходимо вращать около оси х , а профильную плоскость – около оси z в направлении, указанном на рисунке 15 стрелкой.

На рисунке 16 изображено положение проекций а, а? и а?? точки А , полученное в результате совмещения всех трех плоскостей с плоскостью чертежа.

В результате разреза ось у встречается на эпюре в двух различных местах. На горизонтальной плоскости (рис. 16) она принимает вертикальное положение (перпендикулярно оси х ), а на профильной плоскости – горизонтальное (перпендикулярно оси z ).


На рисунке 16 три проекции а, а? и а?? точки А имеют на эпюре строго определенное положение и подчинены однозначным условиям:

а и а? всегда должны располагаться на одной вертикальной прямой, перпендикулярной оси х ;

а? и а?? всегда должны располагаться на одной горизонтальной прямой, перпендикулярной оси z ;

3) при проведении через горизонтальную проекцию а горизонтальной прямой, а через профильную проекцию а?? – вертикальной прямой построенные прямые обязательно пересекутся на биссектрисе угла между осями проекций, так как фигура Оа у а 0 а н – квадрат.

При выполнении построения трех проекций точки нужно проверять выполняемость всех трех условий для каждой точки.

4. Координаты точки

Положение точки в пространстве может быть определено с помощью трех чисел, называемых ее координатами . Каждой координате соответствует расстояние точки от какой-нибудь плоскости проекций.

Расстояние определяемой точки А до профильной плоскости является координатой х , при этом х = а?А (рис. 15), расстояние до фронтальной плоскости – координатой у, причем у = а?А , а расстояние до горизонтальной плоскости – координатой z , при этом z = aA .

На рисунке 15 точка А занимает ширину прямоугольного параллелепипеда, и измерения этого параллелепипеда соответствуют координатам этой точки, т. е., каждая из координат представлена на рисунке 15 четыре раза, т. е.:

х = а?А = Оа х = а у а = a z a?;

y = а?А = Оа y = а x а = а z а?;

z = aA = Oa z = а x а? = а y а?.

На эпюре (рис. 16) координаты х и z встречаются по три раза:

х = а z а?= Оа x = а y а,

z = а x a? = Oa z = а y а?.

Все отрезки, которые соответствуют координате х (или z ), являются параллельными между собой. Координата у два раза представлена осью, расположенной вертикально:

y = Оа у = а х а

и два раза – расположенной горизонтально:

у = Оа у = а z а?.

Данное различие появилось из-за того, что ось у присутствует на эпюре в двух различных положениях.

Следует учесть, что положение каждой проекции определяется на эпюре только двумя координатами, а именно:

1) горизонтальной – координатами х и у ,

2) фронтальной – координатами x и z ,

3) профильной – координатами у и z .

Используя координаты х, у и z , можно построить проекции точки на эпюре.

Если точка А задается координатами, их запись определяется так: А (х; у; z ).

При построении проекций точки А нужно проверять выполняемость следующих условий:

1) горизонтальная и фронтальная проекции а и а? х х ;

2) фронтальная и профильная проекции а? и а? должны располагаться на одном перпендикуляре к оси z , так как имеют общую координату z ;

3) горизонтальная проекция а так же удалена от оси х , как и профильная проекция а удалена от оси z , так как проекции а? и а? имеют общую координату у .

В случае, если точка лежит в любой из плоскостей проекций, то одна из ее координат равна нулю.

Когда точка лежит на оси проекций, две ее координаты равны нулю.

Если точка лежит в начале координат, все три ее координаты равны нулю.



Похожие статьи