Порядок дифференциального уравнения и его решения, задача коши. Алгоритм решения линейных систем дифференциальных уравнений третьего порядка Линейные дифференциальные уравнения высших порядков

Перечислены основные типы обыкновенных дифференциальных уравнений (ДУ) высших порядков, допускающие решение. Кратко изложены методы их решения. Указаны ссылки на страницы, с подробным описанием методов решения и примерами.

Содержание

См. также: Дифференциальные уравнения первого порядка
Линейные дифференциальные уравнения в частных производных первого порядка

Дифференциальные уравнения высших порядков, допускающие понижение порядка

Уравнения, решающиеся непосредственным интегрированием

Рассмотрим дифференциальное уравнение следующего вида:
.
Интегрируем n раз.
;
;
и так далее. Так же можно использовать формулу:
.
См. Дифференциальные уравнения, решающиеся непосредственным интегрированием > > >

Уравнения, не содержащие зависимую переменную y в явном виде

Подстановка приводит к понижению порядка уравнения на единицу. Здесь - функция от .
См. Дифференциальные уравнения высших порядков, не содержащие функцию в явном виде > > >

Уравнения, не содержащие независимую переменную x в явном виде


.
Считаем, что является функцией от . Тогда
.
Аналогично для остальных производных. В результате порядок уравнения понижается на единицу.
См. Дифференциальные уравнения высших порядков, не содержащие переменную в явном виде > > >

Уравнения, однородные относительно y, y′, y′′, ...

Для решения этого уравнения, делаем подстановку
,
где - функция от . Тогда
.
Аналогично преобразуем производные и т.д. В результате порядок уравнения понижается на единицу.
См. Однородные относительно функции и ее производных дифференциальные уравнения высших порядков > > >

Линейные дифференциальные уравнения высших порядков

Рассмотрим линейное однородное дифференциальное уравнение n-го порядка :
(1) ,
где - функции от независимой переменной . Пусть есть n линейно независимых решений этого уравнения. Тогда общее решение уравнения (1) имеет вид:
(2) ,
где - произвольные постоянные. Сами функции образуют фундаментальную систему решений.
Фундаментальная система решений линейного однородного уравнения n-го порядка - это n линейно независимых решений этого уравнения.

Рассмотрим линейное неоднородное дифференциальное уравнение n-го порядка :
.
Пусть есть частное (любое) решение этого уравнения. Тогда общее решение имеет вид:
,
где - общее решение однородного уравнения (1).

Линейные дифференциальные уравнения с постоянными коэффициентами и приводящиеся к ним

Линейные однородные уравнения с постоянными коэффициентами

Это уравнения вида:
(3) .
Здесь - действительные числа. Чтобы найти общее решение этого уравнения, нам нужно найти n линейно независимых решений , которые образуют фундаментальную систему решений. Тогда общее решение определяется по формуле (2):
(2) .

Ищем решение в виде . Получаем характеристическое уравнение :
(4) .

Если это уравнение имеет различные корни , то фундаментальная система решений имеет вид:
.

Если имеется комплексный корень
,
то существует и комплексно сопряженный корень . Этим двум корням соответствуют решения и , которые включаем в фундаментальную систему вместо комплексных решений и .

Кратным корням кратности соответствуют линейно независимых решений: .

Кратным комплексным корням кратности и их комплексно сопряженным значениям соответствуют линейно независимых решений:
.

Линейные неоднородные уравнения со специальной неоднородной частью

Рассмотрим уравнение вида
,
где - многочлены степеней s1 и s2 ; - постоянные.

Сначала мы ищем общее решение однородного уравнения (3). Если характеристическое уравнение (4) не содержит корень , то ищем частное решение в виде:
,
где
;
;
s - наибольшее из s1 и s2 .

Если характеристическое уравнение (4) имеет корень кратности , то ищем частное решение в виде:
.

После этого получаем общее решение:
.

Линейные неоднородные уравнения с постоянными коэффициентами

Здесь возможны три способа решения.

1) Метод Бернулли .
Сначала находим любое, отличное от нуля, решение однородного уравнения
.
Затем делаем подстановку
,
где - функция от переменной x . Получаем дифференциальное уравнение для u , которое содержит только производные от u по x . Выполняя подстановку , получаем уравнение n - 1 - го порядка.

2) Метод линейной подстановки .
Сделаем подстановку
,
где - один из корней характеристического уравнения (4). В результате получим линейное неоднородное уравнение с постоянными коэффициентами порядка . Последовательно применяя такую подстановку, приведем исходное уравнение к уравнению первого порядка.

3) Метод вариации постоянных Лагранжа .
В этом методе мы сначала решаем однородное уравнение (3). Его решение имеет вид:
(2) .
Далее мы считаем, что постоянные являются функциями от переменной x . Тогда решение исходного уравнения имеет вид:
,
где - неизвестные функции. Подставляя в исходное уравнение и накладывая на некоторые ограничения, получаем уравнения, из которых можно найти вид функций .

Уравнение Эйлера

Оно сводится к линейному уравнению с постоянными коэффициентами подстановкой:
.
Однако, для решения уравнения Эйлера, делать такую подстановку нет необходимости. Можно сразу искать решение однородного уравнения в виде
.
В результате получим такие же правила, как и для уравнения с постоянными коэффициентами, в которых вместо переменной нужно подставить .

Использованная литература:
В.В. Степанов, Курс дифференциальных уравнений, «ЛКИ», 2015.
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

См. также: Для более глубокого понимания происходящего в этой статье можно ознакомиться с .

Рассмотрим однородную систему дифференциальных уравнений третьего порядка

Здесь x(t), y(t), z(t) - искомые функции на промежутке (a, b), a ij (i, j =1, 2, 3) - вещественные числа.

Запишем исходную систему в матричном виде
,
где

Решение исходной системы будем искать в виде
,
где , C 1 , C 2 , C 3 - произвольные постоянные.

Чтобы найти фундаментальную систему решений, нужно решить так называемое характеристическое уравнение

Это уравнение является алгебраическим уравнением третьего порядка, следовательно оно имеет 3 корня. При этом возможны следующие случаи:

1. Корни (собственные значения) действительны и различны.

2. Среди корней (собственных значений) есть комплексно-сопряженные, пусть
- действительный корень
=

3. Корни (собственные значения) действительны. Один из корней кратный.

Чтобы разобраться, как действовать в каждом из этих случаев, нам понадобятся:
Теорема 1.
Пусть - попарно различные собственные значения матрица А, а - соответствующие им собственные векторы. Тогда

образуют фундаментальную систему решений исходной системы.

Замечание .
Пусть - действительное собственное значение матрица А (действительный корень характеристического уравнения), - соответствующий ему собственный вектор.
= - комплексные собственные значения матрицы А, - соответствующий - собственный вектор. Тогда

(Re - действительная часть, Im - мнимая)
образуют фундаментальную систему решений исходной системы. (Т.е. и = рассматриваются вместе)

Теорема 3.
Пусть - корень характеристического уравнения кратности 2. Тогда исходная система имеет 2 линейно независимых решения вида
,
где , - постоянные вектора. Если же кратности 3, то существует 3 линейно независимых решения вида
.
Векторы находятся подствалением решений (*) и (**) в исходную систему.
Чтобы лучше понять метод нахождения решений вида (*) и (**), смотри разобранные типичные примеры ниже.

Теперь рассмотрим более подробно каждый из вышеописанных случаев.

1. Алгоритм решения однородных систем дифференциальных уравнений третьего порядка в случае различных действительных корней характеристического уравнения.
Дана система

1) Составляем характеристическое уравнение

- действительные и различные собственные значения 9корни этого уравнения).
2)Строим , где

3)Строим , где
- собственный вектор матрицы А, соответствующий , т.е. - любое решение системы

4)Строим , где
- собственный вектор матрицы А, соответствующий , т.е. - любое решение системы

5)

составляют фундаментальную систему решений. Далее записываем общее решение исходной системы в виде
,
здесь C 1 , C 2 , C 3 - произвольные постоянные,
,
или в координатном виде

Расмотрим несколько примеров:
Пример 1.




2) Находим


3)Находим


4)Вектор-функции



или в координатной записи

Пример 2.

1)Составляем и решаем характеристическое уравнение:

2) Находим


3)Находим


4)Находим


5)Вектор-функции

образуют фундаментальную систему. Общее решение имеет вид

или в координатной записи

2. Алгоритм решения однородных систем дифференциальных уравнений третьего порядка в случае комплексно-сопряженных корней характеристического уравнения.


- действительный корень,

2)Строим , где

3) Строим

- собственный вектор матрицы А, соответствующий , т.е. удовлетворяет системе

Здесь Re - действительная часть
Im - мнимая часть
4) составляют фундаментальную систему решений. Далее записываем общее решение исходной системы:
, где
С 1 , С 2 ,С 3 произвольные постоянные.

Пример 1.

1) Составляем и решаем характеристическое уравнение

2)Строим



3) Строим
, где


Первое уравнение сократим на 2. Затем ко второму уравнению прибавим первое, умноженное на 2i, а от третьего уравнения отнимем перове, умноженное на 2.

Далее

Следовательно,

4) - фундаментальная система решений. Запишем общее решение исходной системы:

Пример 2.

1) Составляем и решаем харктеристическое уравнение


2)Строим

(т.е. и рассматриваем вместе), где


Второе уравнение умножим на (1-i) и сократим на 2.


Следовательно,

3)
Общее решение исходной системы

или

2. Алгоритм решения однородных систем дифференциальных уравнений третьего порядка в случае кратных корней характеристического уравнения.
Составляем и решаем характеристическое уравнение

Возможны два случая:

Рассмотрим случай а) 1) , где

- собственный вектор матрицы А, соответствующий , т.е удовлетворяет системе

2) Сошлемся на Теорему 3, из которой следует, что существуют два линейно независимых решения вида
,
где , - постоянные векторы. Их возьмем за .
3) - фундаментальная система решений. Далее записываем общее решение исходной системы:

Рассмотрим случай б):
1) Сошлемся на Теорему 3, из которой следует, что существует три линейно независимых решения вида
,
где , , - постоянные векторы. Их возьмем за .
2) - фундаментальная система решений. Далее записываем общее решение исходной системы.

Чтобы лучше понять как находить решения вида (*), рассмотрим несколько типичных примеров.

Пример 1.

Составляем и решаем характеристическое уравнение:

Имеем случай а)
1) Строим
, где

Из второго уравнения вычитаем первое:

? третья строка подобна второй, ее вычеркиваем. Из первого уравнения вычтем второе:

2) = 1 (кратность 2)
Этому корню по Т.3 должно соответствовать два линейно независимых решения вида .
Попробуем найти все линейно незваисимые решения, у которых , т.е. решения вида
.
Такой вектор будет решением тогда и только тогда, когда - собственный вектор, соответствующий =1, т.е.
, или
, вторая и третья строки подобны первой, выкидываем их.

Система свелась к одному уравнению. Следовательно, имеется два свободных неизвестных, например, и . Дадим им сначала значения 1, 0; потом значения 0, 1. Получим такие решения:
.
Следовательно, .
3) - фундаментальная система решений. Осталось записать общее решение исходной системы:
. .. Таким образом существует только одно решение вида Подставим X 3 в эту систему: Вычеркнем третью строку (она подобна второй). Система совместна (имеет решение) при любом с. Пусть с=1.
или

Дифференциальные уравнения высших порядков

    Основная терминология дифференциальных уравнений высших порядков (ДУ ВП).

Уравнение вида , где n >1 (2)

называется дифференциальным уравнением высшего порядка, т. е. n -го порядка.

Область определения ДУ, n -го порядка есть область .

В данном курсе будут рассматриваться ДУ ВП следующих видов:

Задача Коши ДУ ВП:

Пусть дано ДУ ,
и начальные условия н/у: числа .

Требуется найти непрерывную и n раз дифференцируемую функцию
:

1)
является решением данного ДУ на , т. е.
;

2) удовлетворяет заданным, начальным условиям: .

Для ДУ второго порядка геометрическая интерпретация решения задачи заключается в следующем: ищется интегральная кривая, проходящая через точку (x 0 , y 0 ) и касающаяся прямой с угловым коэффициентом k = y 0 ́ .

Теорема существования и единственности (решения задачи Коши для ДУ (2)):

Если 1)
непрерывна (по совокупности (n +1) аргументов) в области
; 2)
непрерывны (по совокупности аргументов
) в , то ! решение задачи Коши для ДУ , удовлетворяющее заданным начальным условиям н/у: .

Область называется областью единственности ДУ.

Общее решение ДУ ВП (2) – n -параметрическая функция ,
, где
– произвольные постоянные, удовлетворяющая следующим требованиям:

1)

– решение ДУ (2) на ;

2) н/у из области единственности !
:
удовлетворяет заданным начальным условиям.

Замечание .

Соотношение вида
, неявно определяющее общее решение ДУ (2) на называется общим интегралом ДУ.

Частное решение ДУ (2) получается из его общего решения при конкретном значении .

    Интегрирование ДУ ВП.

Дифференциальные уравнения высших порядков, как правило, не решаются точными аналитическими методами.

Выделим некоторого вида ДУВП, допускающих понижения порядка и сводящихся к квадратурам. Сведем в таблицу эти виды уравнений и способы понижения их порядка.

ДУ ВП, допускающие понижения порядка

Способ понижения порядка

ДУ неполное, в нём отсутствуют
. Например,

И т.д. После n кратного интегрирования получится общее решение ДУ.

Уравнение неполное; в нём явно не содержится искомая функция
и её
первых производных.

Например,

Подстановка

понижает порядок уравнения на k единиц.

Неполное уравнение; в нём явно не содержится аргумента искомой функции . Например,

Подстановка

понижается порядок уравнения на единицу.

Уравнение в точных производных, оно может быть полным и неполным. Такое уравнение можно преобразовать к виду (*) ́= (*)́, где правая и левая части уравнения есть точные производные некоторых функций.

Интегрирование правой и левой части уравнения по аргументу понижает порядок уравнения на единицу.

Подстановка

понижает порядок уравнения на единицу.

Определение однородной функции:

Функция
называется однородной по переменным
, если


в любой точке области определения функции
;

– порядок однородности.

Например, – функция однородная 2-го порядка относительно
, т.е. .

Пример 1 :

Найти общее решение ДУ
.

ДУ 3-го порядка, неполное, не содержит явно
. Последовательно интегрируем уравнение три раза.

,

– общее решение ДУ.

Пример 2 :

Решить задачу Коши для ДУ
при

.

ДУ второго порядка, неполное, не содержит явно .

Подстановка
и ее производная
понизит порядок ДУ на единицу.

. Получили ДУ первого порядка – уравнение Бернулли. Для решения этого уравнения применим подстановку Бернулли:

,

и подставим в уравнение.

На этом этапе решим задачу Коши для уравнения
:
.

– уравнение первого порядка с разделяющимися переменными.

В последнее равенство подставляем начальные условия:

Ответ:
– решение задачи Коши, удовлетворяющее начальным условиям.

Пример 3:

Решить ДУ.

– ДУ 2-го порядка, неполное, не содержит явно переменную , и поэтому допускает понижение порядка на единицу с помощью подстановки или
.

Получим уравнение
(пусть
).

– ДУ 1-го порядка с разделяющими переменными. Разделим их.

– общий интеграл ДУ.

Пример 4 :

Решить ДУ.

Уравнение
есть уравнение в точных производных. Действительно,
.

Проинтегрируем левую и правую части по , т. е.
или . Получили ДУ 1-го порядка с разделяющимися переменными т. е.
– общий интеграл ДУ.

Пример5 :

Решить задачу Коши для
при .

ДУ 4-го порядка, неполное, не содержит явно
. Заметив, что это уравнение в точных производных, получим
или
,
. Подставим в это уравнение начальные условия:
. Получим ДУ
3-го порядка первого вида (см. таблицу). Проинтегрируем его три раза, и после каждого интегрирования в уравнение будем подставлять начальные условия:

Ответ:
- решение задачи Коши исходного ДУ.

Пример 6 :

Решить уравнение.

– ДУ 2-го порядка, полное, содержит однородность относительно
. Подстановка
понизит порядок уравнения. Для этого приведем уравнение к виду
, разделив обе части исходного уравнения на . И продифференцируем функцию p :

.

Подставим
и
в ДУ:
. Это уравнение 1-го порядка с разделяющимися переменными .

Учитывая, что
, получим ДУ или
– общее решение исходного ДУ.

Теория линейных дифференциальных уравнений высшего порядка.

Основная терминология.

– НЛДУ -го порядка, где – непрерывные функции на некотором промежутке .

Называется интервалом непрерывности ДУ (3).

Введем (условный) дифференциальный оператор -го порядка

При действии его на функцию , получим

Т. е. левую часть линейного ДУ -го порядка.

Вследствие этого ЛДУ можно записать

Линейные свойства оператора
:

1) – свойство аддитивности

2)
– число – свойство однородности

Свойства легко проверяются, т. к. производные этих функций обладают аналогичными свойствами (конечная сумма производных равна сумме конечного числа производных; постоянный множитель можно вынести за знак производной).

Т. о.
– линейный оператор.

Рассмотрим вопрос существования и единственности решения задачи Коши для ЛДУ
.

Разрешим ЛДУ относительно
: ,
, – интервал непрерывности.

Функция непрерывная в области , производные
непрерывны в области

Следовательно, область единственности , в которой задача Коши ЛДУ (3) имеет единственное решение и зависит только от выбора точки
, все остальные значения аргументов
функции
можно брать произвольными.

Общая теория ОЛДУ .

– интервал непрерывности.

Основные свойства решений ОЛДУ:

1. Свойство аддитивности

(
– решение ОЛДУ (4) на )
(
– решение ОЛДУ (4) на ).

Доказательство:

– решение ОЛДУ (4) на

– решение ОЛДУ (4) на

Тогда

2. Свойство однородности

( – решение ОЛДУ (4) на ) (
( – числовое поле))

– решение ОЛДУ (4) на .

Доказывается аналогично.

Свойства аддитивности и однородности называются линейными свойствами ОЛДУ (4).

Следствие:

(
– решение ОЛДУ (4) на )(

– решение ОЛДУ (4) на ).

3. ( – комплексно-значное решение ОЛДУ (4) на )(
– действительно-значные решения ОЛДУ (4) на ).

Доказательство:

Если – решение ОЛДУ (4) на , то при подстановке в уравнение обращает его в тождество, т. е.
.

В силу линейности оператора , левую часть последнего равенства можно записать так:
.

Это значит, что , т. е. – действительно-значные решения ОЛДУ (4) на .

Последующие свойства решений ОЛДУ связаны с понятием “линейная зависимость ”.

Определение линейной зависимости конечной системы функций

Система функций называется линейно зависимой на , если найдётся нетривиальный набор чисел
такой, что линейная комбинация
функций
с этими числами тождественно равна нулю на , т. е.
.n , что неверно. Теорема доказана.дифференциальные уравнения высших порядков (4 час...

Обыкновенным дифференциальным уравнением называется уравнение, связывающее независимую переменную, неизвестную функцию этой переменной и её производные (или дифференциалы) различных порядков.

Порядком дифференциального уравнения называется порядок старшей производной, содержащейся в нём.

Кроме обыкновенных изучаются также дифференциальные уравнения с частными производными . Это уравнения, связывающие независимые переменные , неизвестную функцию этих переменных и её частные производные по тем же переменным. Но мы будем рассматривать только обыкновенные дифференциальные уравнения и поэтому будем для краткости опускать слово "обыкновенные".

Примеры дифференциальных уравнений:

(1) ;

(3) ;

(4) ;

Уравнение (1) - четвёртого порядка, уравнение (2) - третьего порядка, уравнения (3) и (4) - второго порядка, уравнение (5) - первого порядка.

Дифференциальное уравнение n -го порядка не обязательно должно содержать явно функцию, все её производные от первого до n -го порядка и независимую переменную. В нём могут не содержаться явно производные некоторых порядков, функция, независимая переменная.

Например, в уравнении (1) явно нет производных третьего и второго порядков, а также функции; в уравнении (2) - производной второго порядка и функции; в уравнении (4) - независимой переменной; в уравнении (5) - функции. Только в уравнении (3) содержатся явно все производные, функция и независимая переменная.

Решением дифференциального уравнения называется всякая функция y = f(x) , при подстановке которой в уравнение оно обращается в тождество.

Процесс нахождения решения дифференциального уравнения называется его интегрированием .

Пример 1. Найти решение дифференциального уравнения .

Решение. Запишем данное уравнение в виде . Решение состоит в нахождении функции по её производной. Изначальная функция, как известно из интегрального исчисления , есть первообразная для , т. е.

Это и есть решение данного дифференциального уравнения . Меняя в нём C , будем получать различные решения. Мы выяснили, что существует бесконечное множество решений дифференциального уравнения первого порядка.

Общим решением дифференциального уравнения n -го порядка называется его решение, выраженное явно относительно неизвестной функции и содержащее n независимых произвольных постоянных, т. е.

Решение дифференциального уравнения в примере 1 является общим.

Частным решением дифференциального уравнения называется такое его решение, в котором произвольным постоянным придаются конкретные числовые значения.

Пример 2. Найти общее решение дифференциального уравнения и частное решение при .

Решение. Проинтегрируем обе части уравнения такое число раз, которому равен порядок дифференциального уравнения.

,

.

В результате мы получили общее решение -

данного дифференциального уравнения третьего порядка.

Теперь найдём частное решение при указанных условиях. Для этого подставим вместо произвольных коэффициентов их значения и получим

.

Если кроме дифференциального уравнения задано начальное условие в виде , то такая задача называется задачей Коши . В общее решение уравнения подставляют значения и и находят значение произвольной постоянной C , а затем частное решение уравнения при найденном значении C . Это и есть решение задачи Коши.

Пример 3. Решить задачу Коши для дифференциального уравнения из примера 1 при условии .

Решение. Подставим в общее решение значения из начального условия y = 3, x = 1. Получаем

Записываем решение задачи Коши для данного дифференциального уравнения первого порядка:

При решении дифференциальных уравнений, даже самых простых, требуются хорошие навыки интегрирования и взятия производных , в том числе сложных функций . Это видно на следующем примере.

Пример 4. Найти общее решение дифференциального уравнения .

Решение. Уравнение записано в такой форме, что можно сразу же интегрировать обе его части.

.

Применяем метод интегрирования заменой переменной (подстановкой) . Пусть , тогда .

Требуется взять dx и теперь - внимание - делаем это по правилам дифференцирования сложной функции , так как x и есть сложная функция ("яблоко" - извлечение квадратного корня или, что то же самое - возведение в степень "одна вторая", а "фарш" - самое выражение под корнем):

Находим интеграл:

Возвращаясь к переменной x , получаем:

.

Это и есть общее решение данного дифференциального уравнения первой степени.

Не только навыки из предыдущих разделов высшей математики потребуются в решении дифференциальных уравнений, но и навыки из элементарной, то есть школьной математики. Как уже говорилось, в дифференциальном уравнении любого порядка может и не быть независимой переменной, то есть, переменной x . Помогут решить эту проблему не забытые (впрочем, у кого как) со школьной скамьи знания о пропорции. Таков следующий пример.



Похожие статьи