Интегрирование иррациональных функций. Сложные интегралы Интегралы иррациональных дробей

Класс иррациональных функцийочень широк, поэтому универсального способа их интегрирования просто быть не может. В этой статье попытаемся выделить наиболее характерные виды иррациональных подынтегральных функций и поставить им в соответствие метод интегрирования.

Бывают случаи, когда уместно использование метода подведения под знак дифференциала. Например, при нахождении неопределенных интегралов вида, гдеp – рациональная дробь.

Пример.

Найти неопределенный интеграл .

Решение.

Не трудно заметить, что . Следовательно, подводим под знак дифференциала и используем таблицу первообразных:

Ответ:

.

13. Дробно-линейная подстановка

Интегралы типа где а, b, с, d - действительные числа,a,b,...,d,g - натуральные числа, сводятся к интегралам от рациональной функции путем подстановкигде К - наименьшее общee кратное знаменателей дробей

Действительно, из подстановки следует, чтои

т. е. х и dx выражаются через рациональные функции от t. При этом и каждая степень дроби выражается через рациональную функцию от t.

Пример 33.4 . Найти интеграл

Решение: Наименьшее общee кратное знаменателей дробей 2/3 и 1/2 есть 6.

Поэтому полагаем х+2=t 6 , х=t 6 -2, dx=6t 5 dt, Следовательно,

Пример 33.5. Указать подстановку для нахождения интегралов:

Решение: Для I 1 подстановка х=t 2 , для I 2 подстановка

14. Тригонометрическая подстановка

Интегралы типа приводятся к интегралам от функций, рационально зависящих от тригонометрических функций, с помощью следующих тригонометрических подстановок: х=а sint для первого интеграла; х=а tgt для второго интеграла;для третьего интеграла.

Пример 33.6. Найти интеграл

Решение: Положим х=2 sin t, dx=2 cos tdt, t=arcsin х/2. Тогда

Здесь подынтегральная функция есть рациональная функция относительно х иВыделив под радикалом полный квадрат и сделав подстановку, интегралы указанного типа приводятся к интегралам уже pасcмoтpeннoгo типа, т. е. к интегралам типаЭти интегралы можно вычислить с помощью соответствующих тригонометрических подстановок.

Пример 33.7. Найти интеграл

Решение: Так как х 2 +2х-4=(х+1) 2 -5, то х+1=t, x=t-1, dx=dt. ПоэтомуПоложим

Замечание: Интеграл типа целессooбразно находить с помощью подстановки х=1/t.

15. Определенный интеграл

Пусть функция задана на отрезкеи имеет на нем первообразную. Разностьназываютопределенным интегралом функции по отрезкуи обозначают. Итак,

Разность записывают в виде, тогда. Числаиназываютпределами интегрирования .

Например, одна из первообразных для функции. Поэтому

16 . Если с - постоянное число и функция ƒ(х) интегрируема на , то

т. е. постоянный множитель с можно выносить за знак определенного интеграла.

▼Составим интегральную сумму для функции с ƒ(х). Имеем:

Тогда Отсюда вытекает, что функцияс ƒ(х) интегрируема на [а; b] и справедлива формула (38.1).▲

2. Если функции ƒ 1 (х) и ƒ 2 (х) интегрируемы на [а;b], тогда интегрируема на [а; b] их сумма u

т. е. интеграл от суммы равен сумме интегралов.


Свойство 2 распространяется на сумму любого конечного числа слагаемых.

3.

Это свойство можно принять по определению. Это свойство также подтверждается формулой Ньютона-Лейбница.

4. Если функция ƒ(х) интегрируема на [а; b] и а < с < b, то

т. е. интеграл по всему отрезку равен сумме интегралов по частям этого отрезка. Это свойство называют аддитивностью определенного интеграла (или свойством аддитивности).

При разбиении отрезка [а;b] на части включим точку с в число точек деления (это можно сделать ввиду независимости предела интегральной суммы от способа разбиения отрезка [а; b] на части). Если с = х m , то интегральную сумму можно разбить на две суммы:

Каждая из написанных сумм является интегральной соответственно для отрезков [а; b], [а; с] и [с; b]. Переходя к пределу в последнем равенстве при n → ∞ (λ → 0), получим равенство (38.3).

Свойство 4 справедливо при любом расположении точек а, b, с (считаем, что функция ƒ (х) интегрируема на большем из получающихся отрезков).

Так, например, если а < b < с, то

(использованы свойства 4 и 3).

5. «Теорема о среднем». Если функция ƒ(х) непрерывна на отрезке [а; b], то существует тонка с є [а; b] такая, что

▼По формуле Ньютона-Лейбница имеем

где F"(x) = ƒ(х). Применяя к разности F(b)-F(a) теорему Лагранжа (теорему о конечном приращении функции), получим

F(b)-F(a) = F"(c) (b-а) = ƒ(с) (b-а).▲

Свойство 5 («теорема о среднем») при ƒ (х) ≥ 0 имеет простой геометрический смысл: значение определенного интеграла равно, при некотором с є (а; b), площади прямоугольника с высотой ƒ (с) и основанием b- а (см. рис. 170). Число

называется средним значением функции ƒ(х) на отрезке [а; b].

6. Если функция ƒ (х) сохраняет знак на отрезке [а; b], где а < b, то интегралимеет тот же знак, что и функция. Так, если ƒ(х)≥0 на отрезке [а; b], то

▼По «теореме о среднем» (свойство 5)

где с є [а; b]. А так как ƒ(х) ≥ 0 для всех х Î [а; b], то и

ƒ(с)≥0, b-а>0.

Поэтому ƒ(с) (b-а) ≥ 0, т. е.

7. Неравенство между непрерывными функциями на отрезке [а; b], (a

▼Так как ƒ 2 (х)-ƒ 1 (x)≥0, то при а < b, согласно свойству 6, имеем

Или, согласно свойству 2,

Отметим,что дифференцировать неравенства нельзя.

8. Оценка интеграла. Если m и М - соответственно наименьшее и наибольшее значения функции у = ƒ (х) на отрезке [а; b], (а < b), то

▼Так как для любого х є [а;b] имеем m≤ƒ(х)≤М, то, согласно свойству 7, имеем

Применяяк крайним интегралам свойство 5, получаем

Если ƒ(х)≥0, то свойство 8 иллюстрирует ся геометрически: площадь криволинейной трапеции заключена между площадями прямоугольников, основание которых есть , а высоты равны m и М (см. рис. 171).

9. Модуль определенного интеграла не превосходит интеграла от модуля подынтегральной функции:

▼Применяя свойство 7 к очевидным неравенствам -|ƒ(х)|≤ƒ(х)≤|ƒ(х)|, получаем

Отсюда следует, что

10. Производная определенного интеграла по переменному верхнему пределу равна подынтегральной функции, в которой переменная интегрирования заменена этим пределом, т. е.

Вычисление площади фигуры является одной из наиболее не простых проблем теории площадей. В школьном курсе геометрии мы научились находить площади основных геометрических фигур, например, круга, треугольника, ромба и т.п. Однако намного чаще приходится сталкиваться с вычислением площадей более сложных фигур. При решении подобных задач приходится прибегать к интегральному исчислению.

В этой статье мы рассмотрим задачу о вычислении площади криволинейной трапеции, причем подойдем к ней в геометрическом смысле. Это позволит нам выяснить прямую связь между определенным интегралом и площадью криволинейной трапеции.

Пусть функция y = f(x) непрерывна на отрезке и не меняет знак на нем (то есть, неотрицательная или неположительная). Фигуру G , ограниченную линиями y = f(x), y = 0, x = a и x = b , называют криволинейной трапецией . Обозначим ее площадь S(G) .

Подойдем к задаче вычисления площади криволинейной трапеции следующим образом. В разделе квадрируемые фигурымы выяснили, что криволинейная трапеция является квадрируемой фигурой. Если разбить отрезок на n частей точкамии обозначить, а точкивыбирать так, чтобыпри, то фигуры, соответствующие нижней и верхней суммам Дарбу, можно считать входящейP и объемлющей Q многоугольными фигурами для G .

Таким образом, и при увеличении количества точек разбиенияn , мы придем к неравенству , где- сколь угодно малое положительное число, аs и S – нижняя и верхняя суммы Дарбу для данного разбиения отрезка . В другой записи . Следовательно, обратившись кпонятию определенного интеграла Дарбу, получаем.

Последнее равенство означает, что определенный интеграл для непрерывной и неотрицательной функцииy = f(x) представляет собой в геометрическом смысле площадь соответствующей криволинейной трапеции. В этом и состоит геометрический смысл определенного интеграла .

То есть, вычислив определенный интеграл , мы найдем площадь фигуры, ограниченной линиямиy = f(x), y = 0, x = a и x = b .

Замечание.

Если функция y = f(x) неположительная на отрезке , то площадь криволинейной трапеции может быть найдена как .

Пример.

Вычислить площадь фигуры, ограниченной линиями .

Решение.

Построим фигуру на плоскости: прямая y = 0 совпадает с осью абсцисс, прямые x = -2 и x = 3 параллельны оси ординат, а кривая может быть построена с помощьюгеометрических преобразований графика функции.

Таким образом, нам требуется найти площадь криволинейной трапеции. Геометрический смысл определенного интеграла нам указывает на то, что искомая площадь выражается определенным интегралом. Следовательно, . Этот определенный интеграл можно вычислить поформуле Ньютона-Лейбница.

Интегралы вида (m 1 , n 1 , m 2 , n 2 , … - целые числа). В этих интегралах подынтегральная функция рациональна относительно переменной интегрирования и радикалов от х. Они вычисляются подстановкой x=t s , где s - общий знаменатель дробей, … При такой замене переменной все отношения = r 1 , = r 2 , … являются целыми числами, т. е. интеграл приводится к рациональной функции от переменной t:

Интегралы вида (m 1 , n 1 , m 2 , n 2 , … - целые числа). Эти интегралы подстановкой:

где s - общий знаменатель дробей, …, сводятся к рациональной функции от переменной t.

Интегралы вида Для вычисления интеграла I 1 выделяется полный квадрат под знаком радикала:

и применяется подстановка:

В результате этот интеграл сводится к табличному:

В числителе интеграла I 2 выделяется дифференциал выражения, стоящего под знаком радикала, и этот интеграл представляется в виде суммы двух интегралов:

где I 1 - вычисленный выше интеграл.

Вычисление интеграла I 3 сводится к вычислению интеграла I 1 подстановкой:

Интеграл вида Частные случаи вычисления интегралов данного вида рассмотрены в предыдущем пункте. Существует несколько различных приемов их вычисления. Рассмотрим один из таких приемов, основанный на применении тригонометрических подстановок.

Квадратный трехчлен ax 2 +bx+c путем выделения полного квадрата и замены переменной может быть представлен в виде Таким образом, достаточно ограничиться рассмотрением трех видов интегралов:

Интеграл подстановкой

u=ksint (или u=kcost)

сводится к интегралу от рациональной функции относительно sint и cost.

Интегралы вида (m, n, p є Q, a, b є R). Рассматриваемые интегралы, называемые интегралами от дифференциального бинома, выражаются через элементарные функции только в следующих трех случаях:

1) если p є Z, то применяется подстановка:

где s - общий знаменатель дробей m и n;

2) если Z, то используется подстановка:

где s - знаменатель дроби

3) если Z, то применяется подстановка:

где s - знаменатель дроби

Универсального способа решения иррациональных уравнений нет, так как их класс отличается количеством. В статье будут выделены характерные виды уравнений с подстановкой при помощи метода интегрирования.

Для использования метода непосредственного интегрирования необходимо вычислять неопределенные интегралы типа ∫ k x + b p d x , где p является рациональной дробью, k и b являются действительными коэффициентами.

Пример 1

Найти и вычислить первообразные функции y = 1 3 x - 1 3 .

Решение

По правилу интегрирования необходимо применить формулу ∫ f (k · x + b) d x = 1 k · F (k · x + b) + C , а таблица первообразных говорит о том, что имеется готовое решение данной функции. Получаем, что

∫ d x 3 x - 1 3 = ∫ (3 x - 1) - 1 3 d x = 1 3 · 1 - 1 3 + 1 · (3 x - 1) - 1 3 + 1 + C = = 1 2 (3 x - 1) 2 3 + C

Ответ: ∫ d x 3 x - 1 3 = 1 2 (3 x - 1) 2 3 + C .

Имеют место быть случаи, когда можно использовать метод подведения под знак дифференциала. Это решается по принципу нахождения неопределенных интегралов вида ∫ f " (x) · (f (x)) p d x , когда значение p считается рациональной дробью.

Пример 2

Найти неопределенный интеграл ∫ 3 x 2 + 5 x 3 + 5 x - 7 7 6 d x .

Решение

Отметим, что d x 3 + 5 x - 7 = x 3 + 5 x - 7 " d x = (3 x 2 + 5) d x . Тогда необходимо произвести подведение под знак дифференциала с использованием таблиц первообразных. Получаем, что

∫ 3 x 2 + 5 x 3 + 5 x - 7 7 6 d x = ∫ (x 3 + 5 x - 7) - 7 6 · (3 x 2 + 5) d x = = ∫ (x 3 + 5 x - 7) - 7 6 d (x 3 + 5 x - 7) = x 3 + 5 x - 7 = z = = ∫ z - 7 6 d z = 1 - 7 6 + 1 z - 7 6 + 1 + C = - 6 z - 1 6 + C = z = x 3 + 5 x - 7 = - 6 (x 3 + 5 x - 7) 6 + C

Ответ: ∫ 3 x 2 + 5 x 3 + 5 x - 7 7 6 d x = - 6 (x 3 + 5 x - 7) 6 + C .

Решение неопределенных интегралов предусматривает формулу вида ∫ d x x 2 + p x + q , где p и q являются действительными коэффициентами. Тогда необходимо выделить полный квадрат из-под корня. Получаем, что

x 2 + p x + q = x 2 + p x + p 2 2 - p 2 2 + q = x + p 2 2 + 4 q - p 2 4

Применив формулу, расположенную в таблице неопределенных интегралов, получаем:

∫ d x x 2 ± α = ln x + x 2 ± α + C

Тогда вычисление интеграла производится:

∫ d x x 2 + p x + q = ∫ d x x + p 2 2 + 4 q - p 2 4 = = ln x + p 2 + x + p 2 2 + 4 q - p 2 4 + C = = ln x + p 2 + x 2 + p x + q + C

Пример 3

Найти неопределенный интеграл вида ∫ d x 2 x 2 + 3 x - 1 .

Решение

Для вычисления необходимо вынести число 2 и расположить его перед радикалом:

∫ d x 2 x 2 + 3 x - 1 = ∫ d x 2 x 2 + 3 2 x - 1 2 = 1 2 ∫ d x x 2 + 3 2 x - 1 2

Произвести выделение полного квадрата в подкоренном выражении. Получим, что

x 2 + 3 2 x - 1 2 = x 2 + 3 2 x + 3 4 2 - 3 4 2 - 1 2 = x + 3 4 2 - 17 16

Тогда получаем неопределенный интеграл вида 1 2 ∫ d x x 2 + 3 2 x - 1 2 = 1 2 ∫ d x x + 3 4 2 - 17 16 = = 1 2 ln x + 3 4 + x 2 + 3 2 x - 1 2 + C

Ответ: d x x 2 + 3 x - 1 = 1 2 ln x + 3 4 + x 2 + 3 2 x - 1 2 + C

Интегрирование иррациональных функций производится аналогичным способом. Применимо для функций вида y = 1 - x 2 + p x + q .

Пример 4

Найти неопределенный интеграл ∫ d x - x 2 + 4 x + 5 .

Решение

Для начала необходимо вывести квадрат знаменателя выражения из-под корня.

∫ d x - x 2 + 4 x + 5 = ∫ d x - x 2 - 4 x - 5 = = ∫ d x - x 2 - 4 x + 4 - 4 - 5 = ∫ d x - x - 2 2 - 9 = ∫ d x - (x - 2) 2 + 9

Табличный интеграл имеет вид ∫ d x a 2 - x 2 = a r c sin x a + C , тогда получаем, что ∫ d x - x 2 + 4 x + 5 = ∫ d x - (x - 2) 2 + 9 = a r c sin x - 2 3 + C

Ответ: ∫ d x - x 2 + 4 x + 5 = a r c sin x - 2 3 + C .

Процесс нахождения первообразных иррациональных функций вида y = M x + N x 2 + p x + q , где имеющиеся M , N , p , q являются действительными коэффициентами, причем имеют схожесть с интегрированием простейших дробей третьего типа. Это преобразование имеет несколько этапов:

подведение дифференциала под корень, выделение полного квадрата выражения под корнем, применение табличных формул.

Пример 5

Найти первообразные функции y = x + 2 x 2 - 3 x + 1 .

Решение

Из условия имеем, что d (x 2 - 3 x + 1) = (2 x - 3) d x и x + 2 = 1 2 (2 x - 3) + 7 2 , тогда (x + 2) d x = 1 2 (2 x - 3) + 7 2 d x = 1 2 d (x 2 - 3 x + 1) + 7 2 d x .

Рассчитаем интеграл: ∫ x + 2 x 2 - 3 x + 1 d x = 1 2 ∫ d (x 2 - 3 x + 1) x 2 - 3 x + 1 + 7 2 ∫ d x x 2 - 3 x + 1 = = 1 2 ∫ (x 2 - 3 x + 1) - 1 2 d (x 2 - 3 x + 1) + 7 2 ∫ d x x - 3 2 2 - 5 4 = = 1 2 · 1 - 1 2 + 1 · x 2 - 3 x + 1 - 1 2 + 1 + 7 2 ln x - 3 2 + x - 3 2 - 5 4 + C = = x 2 - 3 x + 1 + 7 2 ln x - 3 2 + x 2 - 3 x + 1 + C

Ответ: ∫ x + 2 x 2 - 3 x + 1 d x = x 2 - 3 x + 1 + 7 2 ln x - 3 2 + x 2 - 3 x + 1 + C .

Поиск неопределенных интегралов функции ∫ x m (a + b x n) p d x осуществляется при помощи метода подстановки.

Для решения необходимо ввести новые переменные:

  1. Когда число p является целым, тогда считают, что x = z N , а N является общим знаменателем для m , n .
  2. Когда m + 1 n является целым числом, тогда a + b x n = z N , а N является знаменателем числа p .
  3. Когда m + 1 n + p является целым числом, то необходим ввод переменной a x - n + b = z N , а N является знаменателем числа p .
Пример 6

Найти определенный интеграл ∫ 1 x 2 x - 9 d x .

Решение

Получаем, что ∫ 1 x 2 x - 9 d x = ∫ x - 1 · (- 9 + 2 x 1) - 1 2 d x . Отсюда следует, что m = - 1 , n = 1 , p = - 1 2 , тогда m + 1 n = - 1 + 1 1 = 0 является целым числом. Можно ввести новую переменную вида - 9 + 2 x = z 2 . Необходимо выразить x через z . На выходы получим, что

9 + 2 x = z 2 ⇒ x = z 2 + 9 2 ⇒ d x = z 2 + 9 2 " d z = z d z - 9 + 2 x = z

Необходимо произвести подстановку в заданный интеграл. Имеем, что

∫ d x x 2 x - 9 = ∫ z d z z 2 + 9 2 · z = 2 ∫ d z z 2 + 9 = = 2 3 a r c t g z 3 + C = 2 3 a r c c t g 2 x - 9 3 + C

Ответ: ∫ d x x 2 x - 9 = 2 3 a r c c t g 2 x - 9 3 + C .

Для упрощения решения иррациональных уравнений применяются основные методы интегрирования.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Даны основные методы интегрирования иррациональных функций (корней). Они включают в себя: интегрирование дробно-линейной иррациональности, дифференциального бинома, интегралы с квадратным корнем из квадратного трехчлена. Приводятся тригонометрические подстановки и подстановки Эйлера. Рассмотрены некоторые эллиптические интегралы, выражающиеся через элементарные функции.

Содержание

Интегралы от дифференциальных биномов

Интегралы от дифференциальных биномов имеют вид:
,
где m, n, p - рациональные числа, a, b - действительные числа.
Такие интегралы сводятся к интегралам от рациональных функций в трех случаях.

1) Если p - целое. Подстановка x = t N , где N - общий знаменатель дробей m и n .
2) Если - целое. Подстановка a x n + b = t M , где M - знаменатель числа p .
3) Если - целое. Подстановка a + b x - n = t M , где M - знаменатель числа p .

В остальных случаях, такие интегралы не выражаются через элементарные функции.

Иногда такие интегралы можно упростить с помощью формул приведения:
;
.

Интегралы, содержащие квадратный корень из квадратного трехчлена

Такие интегралы имеют вид:
,
где R - рациональная функция. Для каждого такого интеграла имеется несколько методов решения.
1) С помощью преобразований привести к более простым интегралам.
2) Применить тригонометрические или гиперболические подстановки.
3) Применить подстановки Эйлера.

Рассмотрим эти методы более подробно.

1) Преобразование подынтегральной функции

Применяя формулу , и выполняя алгебраические преобразования, приводим подынтегральную функцию к виду:
,
где φ(x), ω(x) - рациональные функции.

I тип

Интеграл вида:
,
где P n (x) - многочлен степени n .

Такие интегралы находятся методом неопределенных коэффициентов, используя тождество:

.
Дифференцируя это уравнение и приравнивая левую и правую части, находим коэффициенты A i .

II тип

Интеграл вида:
,
где P m (x) - многочлен степени m .

Подстановкой t = (x - α) -1 этот интеграл приводится к предыдущему типу. Если m ≥ n , то у дроби следует выделить целую часть.

III тип

Здесь мы делаем подстановку:
.
После чего интеграл примет вид:
.
Далее, постоянные α, β нужно выбрать такими, чтобы в знаменателе коэффициенты при t обратились в нуль:
B = 0, B 1 = 0 .
Тогда интеграл распадается на сумму интегралов двух видов:
,
,
которые интегрируются подстановками:
u 2 = A 1 t 2 + C 1 ,
v 2 = A 1 + C 1 t -2 .

2) Тригонометрические и гиперболические подстановки

Для интегралов вида , a > 0 ,
имеем три основные подстановки:
;
;
;

Для интегралов , a > 0 ,
имеем следующие подстановки:
;
;
;

И, наконец, для интегралов , a > 0 ,
подстановки следующие:
;
;
;

3) Подстановки Эйлера

Также интегралы могут быть сведены к интегралам от рациональных функций одной из трех подстановок Эйлера:
, при a > 0 ;
, при c > 0 ;
, где x 1 - корень уравнения a x 2 + b x + c = 0 . Если это уравнение имеет действительные корни.

Эллиптические интегралы

В заключении рассмотрим интегралы вида:
,
где R - рациональная функция, . Такие интегралы называются эллиптическими. В общем виде они не выражаются через элементарные функции. Однако встречаются случаи, когда между коэффициентами A, B, C, D, E существуют соотношения, при которых такие интегралы выражаются через элементарные функции.

Ниже приводится пример, связанный с возвратными многочленами. Вычисление подобных интегралов выполняется с помощью подстановок:
.

Пример

Вычислить интеграл:
.

Делаем подстановку .

.
Здесь при x > 0 (u > 0 ) берем верхний знак ′+ ′. При x < 0 (u < 0 ) - нижний ′- ′.


.

Использованная литература:
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

См. также:

План:

  1. Интегрирование простейших рациональных дробей.
  2. Интегрирование некоторых иррациональных функций.
  3. Универсальная тригонометрическая подстановка.
  1. Интегрирование простейших рациональных дробей

Напомним, что функция вида Р(х)=а о х п + а 1 х п-1 + а 2 х п-2 +…+ а п-1 х п + а п , где , а о, а 1 …а п – постоянные коэффициенты, называется многочленом или рациональной функцией . Число п называют степенью многочлена .

Дробно-рациональной функцией называется функция, равная отношению двух многочленов, т.е. .

Рассмотрим некоторые простейшие интегралы от дробно-рациональных функций:

1.1. Для нахождения интегралов вида (А - const ) будем пользоваться интегралами от некоторых сложных функций: = .

Пример 20.1. Найдите интеграл .

Решение. Воспользуемся приведенной выше формулой = . Получим, что = .

1.2. Для нахождения интегралов вида (А - const ) будем применять метод выделения в знаменателе полного квадрата. Исходный интеграл в результате преобразований сведется к одному из двух табличных интегралов: или .

Рассмотрим вычисление таких интегралов на конкретном примере.

Пример 20.2. Найдите интеграл .

Решение. Попытаемся выделить в знаменателе полный квадрат, т.е. прийти к формуле (a ± b) 2 = a 2 ± 2ab +b 2 .

Для этого 4х представляем как удвоенное произведение 2∙2∙х . Следовательно, к выражению х 2 + 4х чтобы получить полный квадрат следует добавить квадрат числа два, т.е. 4: х 2 + 4х + 4 = (х + 2) 2 . х + 2) 2 вычесть 4. Получим следующую цепочку преобразований:

х + 2 = и , тогда . Подставим и и dx в полученный интеграл: = = . Воспользуемся табличным интегралом: , где а =3.Получим, что = . Подставим вместо и выражение х+ 2:

Ответ: = .

1.3. Для нахождения интегралов вида (M, N - const ) будем применять следующий алгоритм :

1. Выделим в знаменателе полный квадрат.

2. Выражение, стоящее в скобках, обозначим новой переменной t. Найдем х , dx и подставим их вместе с t в исходный интеграл (получим интеграл, содержащий только переменную t ).

3. Разобьем полученный интеграл на сумму двух интегралов, каждый из которых вычислим отдельно: один интеграл решается методом подстановки, второй сводится к одной из формул или .

Пример 20.3. Найдите интеграл .

Решение. 1. Попытаемся выделить в знаменателе полный квадрат. Для этого 6х представляем как удвоенное произведение 2∙3∙х . Тогда к выражению х 2 - 6х следует добавить квадрат числа три, т.е. число 9: х 2 – 6х + 9 = (х - 3) 2 . Но, чтобы выражение в знаменателе не изменилось, нужно из (х- 3) 2 вычесть 9. Получим цепочку преобразований:



2. Введем следующую подстановку: пусть х-3 =t (значит, х =t+ 3), тогда . Подставим t, х, dx в интеграл :

3. Представим полученный интеграл как сумму двух интегралов:

Найдем их отдельно.

3.1 Первый интеграл вычисляется методом подстановки. Обозначим знаменатель дроби , тогда . Отсюда . Подставляем и и dt в интеграл и приводим его к виду: = = =ln|u|+C= =ln|t 2 +16|+C. Осталось вернуться к переменной х . Поскольку , то ln|t 2 +16|+C = ln|х 2 - 6х +25|+C.

3.2 Второй интеграл вычисляется по формуле: (где а= 4). Тогда = = .

3.3 Исходный интеграл равен сумме интегралов, найденных в пунктах 3.1 и 3.2: = ln|х 2 - 6х +25|+ .

Ответ: = ln|х 2 - 6х +25|+ .

Методы интегрирования других рациональных функций рассматриваются в полном курсе математического анализа (см., например, Письменный Д.Т. Конспект лекций по высшей математике, ч.1- М.:Айрис-пресс, 2006.).

  1. Интегрирование некоторых иррациональных функций.

Рассмотрим нахождение неопределенных интеграл от следующих типов иррациональных функций: и (а,b,c – const). Для их нахождения будем использовать метод выделения полного квадрата в иррациональном выражении. Тогда рассматриваемые интегралы можно будет привести к видам: ,

Разберем нахождение интегралов от некоторых иррациональных функций на конкретных примерах.

Пример 20.4. Найдите интеграл .

Решение. Попытаемся выделить в знаменателе полный квадрат. Для этого 2х представляем как удвоенное произведение 2∙1∙х . Тогда к выражению х 2 +2х следует добавить квадрат единицы (х 2 + 2х + 1 = (х + 1) 2) и вычесть 1. Получим цепочку преобразований:

Вычислим полученный интеграл методом подстановки. Положим х + 1 = и , тогда . Подставим и, dx , где а =4.Получим, что . Подставим вместо и выражение х+ 1:

Ответ: = .

Пример 20.5. Найдите интеграл .

Решение. Попытаемся выделить под знаком корня полный квадрат. Для этого 8х представляем как удвоенное произведение 2∙4∙х . Тогда к выражению х 2 -8х следует добавить квадрат четырех (х 2 - 8х + 16 = (х - 4) 2) и вычесть его. Получим цепочку преобразований:

Вычислим полученный интеграл методом подстановки. Положим х - 4 = и , тогда . Подставим и, dx в полученный интеграл: = . Воспользуемся табличным интегралом: , где а =3.Получим, что . Подставим вместо и выражение х- 4:

Ответ: = .

  1. Универсальная тригонометрическая подстановка.

Если требуется найти неопределенный интеграл от функции, содержащей sinx и cosx , которые связаны только операциями сложения, вычитания, умножения или деления, то можно использовать универсальную тригонометрическую подстановку .

Суть этой подстановки заключается в том, что sinx и cosx можно выразить через тангенс половинного угла следующим образом: , . Тогда, если ввести подстановку , то sinx и cosx будут выражены через t следующим образом: , . Осталось выразить х через t и найти dх.

Если , то . Найдем dх: = .

Итак, для применения универсальной подстановки достаточно обозначить sinx и cosx через t (формулы выделены в рамке), а записать как . В итоге под знаком интеграла должна получиться рациональная функция, интегрирование которой рассматривалось в пункте 1. Обычно метод применения универсальной подстановки весьма громоздкий, но он всегда приводит к результату.

Рассмотрим пример применения универсальной тригонометрической подстановки.

Пример 20.6. Найдите интеграл .

Решение. Применим универсальную подстановку , тогда , , dх= . Следовательно, = = = = = ., тогда берутся ").

Существует множество интегралов, которые называют "неберущимися ". Такие интегралы не выражаются через привычные нам элементарные функции. Так, например, нельзя взять интеграл , т.к. не существует элементарной функции, производная которой была бы равна . Но некоторые из "неберущихся" интегралов имеют большое прикладное значение. Так интеграл называют интегралом Пуассона и широко применяют в теории вероятностей.

Существуют и другие важные "неберущиеся" интегралы: - интегральный логарифм (применяется в теории чисел), и - интегралы Френеля (применяются в физике). Для них составлены подробные таблицы значений при различных значениях аргумента х .

Контрольные вопросы:



Похожие статьи