Иррациональное число. Иррациональные числа, определение, примеры Натуральные числа $\mathbb{N}$

Не все действия, рассматриваемые в алгебре, выполнимы в поле рациональных чисел. Примером может служить операция извлечения квадратного корня. Так, если равенство выполняется при значениях , то равенство не имеет места ни при каком рациональном значении Докажем это. Сначала заметим, что целое не может иметь квадрата, равного 2: при имеем а при заведомо больше 2. Предположим теперь, что дробное: (дробь считается несократимой) и

Отсюда имеем должно быть четным числом (иначе квадрат не был бы четным). Положим .

Теперь получается, что и - четное, что противоречит допущению о несократимости дроби

Это показывает, что в области рациональных чисел из числа 2 нельзя извлечь квадратный корень, символ не имеет смысла в области рациональных чисел. Между тем задача: «найти сторону квадрата, зная, что площадь его равна S» - столь же естественна при как и при Выход из этого и других подобных затруднений состоит в дальнейшем расширении понятия числа, во введении нового вида чисел - иррациональных чисел.

Покажем, как вводятся иррациональные числа на примере задачи извлечения квадратного корня из числа 2; для простоты ограничимся положительным значением корня.

Для каждого положительного рационального числа будет иметь место одно из неравенств или Очевидно, что . Рассматриваем затем числа и находим два соседних среди них с тем свойством, что первое имеет квадрат, меньший двух, а второе - больший двух. Именно, Аналогично, продолжая этот процесс, получим ряд неравенств (для получения десятичных дробей, написанных здесь, можно также использовать известный алгоритм приближенного извлечения квадратного корня, п. 13):

Сопоставляя сначала целые части, а затем первые, вторые, третьи и т. д. цифры после запятой у рациональных чисел, между квадратами которых лежит 2, мы можем последовательно выписать эти десятичные знаки:

Процесс отыскания пар рациональных чисел (выраженных конечными десятичными дробями), отличающихся друг от друга на со все большим m может быть продолжен неограниченно. Поэтому можно рассматривать дробь (6.1) как бесконечную десятичную дробь (непериодическую, так как в случае периодичности она представляла бы рациональное число).

Эта бесконечная непериодическая дробь, любое число десятичных знаков которой мы можем выписать, но для которой нельзя осуществить записи одновременно всех знаков, и принимается за число, равное (т. е. за число, квадрат которого равен 2).

Отрицательное значение корня квадратного из двух мы представим в виде

или, пользуясь искусственной формой записи чисел, в виде

Введем теперь следующее определение: иррациональным числом называется всякая бесконечная непериодическая десятичная дробь

где а - делая часть числа (она может быть положительной, равной нулю или отрицательной), а - десятичные знаки (цифры) его дробной части.

Заданное бесконечной непериодической дробью иррациональное число определяет две последовательности конечных десятичных дробей, называемых десятичными приближениями а по недостатку и по избытку:

Например, для запишем

и т. д. Здесь, например, 1,41 - десятичное приближение с точностью до 0,01 по недостатку, а 1,42 - по избытку.

Запись неравенств между иррациональным числом и его десятичными приближениями входит в самое определение понятия иррационального числа и может быть положена в основу определения соотношений «больше» и «меньше» для иррациональных чисел.

Возможность представления иррациональных чисел их все более и более точными десятичными приближениями лежит также в основе определения арифметических действий над иррациональными числами, которые фактически производятся над их иррациональными приближениями по недостатку или по избытку.

К иррациональным числам приводят многие действия, как, например, действие извлечения корня степени из рационального числа (если оно не представляет собой степень другого рационального числа), логарифмирование и т. д. Иррациональным является число , равное отношению длины окружности к ее диаметру (п. 229).

Все рациональные и иррациональные числа образуют в совокупности множество действительных (или вещественных) чисел. Таким образом, всякая десятичная дробь, конечная или бесконечная (периодическая или непериодическая), всегда определяет действительное число.

Всякое отличное от нуля действительное число либо положительно, либо отрицательно.

Напомним в связи с этим следующее определение. Абсолютной величиной или модулем действительного числа а называется число определяемое равенствами а, если

Таким образом, модуль неотрицательного числа равен самому этому числу (верхняя строка равенства); модуль отрицательного числа равен этому числу, взятому с противоположным знаком (нижняя строка). Так, например,

Из определения модуля следует, что модуль любого числа есть число неотрицательное; если модуль числа равен нулю, то и само число равно нулю, в остальных случаях модуль положителен.

Действительные числа образуют числовое поле - поле действительных чисел: результат рациональных действий над действительными числами снова выражается действительным числом. Заметим, что взятые в отдельности иррациональные числа не образуют ни поля, нидаже кольца: например, сумма двух иррациональных чисел равна рациональному числу 3.

Наш краткий очерк развития понятия о числе, построенный по схеме

мы заключим указанием на наиболее важные свойства совокупности действительных чисел.

1. Действительные числа образуют поле.

2. Действия над действительными числами подчинены обычным законам (например, сложение и умножение - законам коммутативности, ассоциативности, дистрибутивности, п. 1).

3. Для любых двух действительных чисел а и b имеет место одно и только одно из трех соотношений: а больше b (а > b), а меньше , а равно . Говорят поэтому, что множество действительных чисел упорядочено.

4. Принято, наконец, говорить, что множество действительных чисел обладает свойством непрерывности. Смысл, который придается этому выражению, пояснен в п. 8. Именно это свойство существенно отличает поле действительных чисел от поля рациональных чисел.


Какие числа являются иррациональными? Иррациональное число — это не рациональное вещественное число, т.е. оно не может быть представлено как дробь (как отношение двух целых чисел), где m — целое число, n — натуральное число . Иррациональное число можно представить как бесконечную непериодическую десятичную дробь.

Иррациональное число не может иметь точного значения. Только в формате 3,333333…. Например , квадратный корень из двух - является числом иррациональным.

Какое число иррациональное? Иррациональным числом (в отличии от рациональных) называется бесконечная десятичная непериодическая дробь.

Множество иррациональных чисел зачастую обозначают заглавной латинской буквой в полужирном начертании без заливки. Т.о.:

Т.е. множество иррациональных чисел это разность множеств вещественных и рациональных чисел.

Свойства иррациональных чисел.

  • Сумма 2-х неотрицательных иррациональных чисел может быть рациональным числом.
  • Иррациональные числа определяют дедекиндовы сечения в множестве рациональных чисел, в нижнем классе у которых нет самого большого числа, а в верхнем нет меньшего.
  • Всякое вещественное трансцендентное число - это иррациональное число.
  • Все иррациональные числа являются или алгебраическими, или трансцендентными.
  • Множество иррациональных чисел везде плотно на числовой прямой: меж каждой парой чисел есть иррациональное число.
  • Порядок на множестве иррациональных чисел изоморфен порядку на множестве вещественных трансцендентных чисел.
  • Множество иррациональных чисел бесконечно, является множеством 2-й категории.
  • Результатом каждой арифметической операции с рациональными числами (кроме, деления на 0) является рациональные числа. Результатом арифметических операций над иррациональными числами может стать как рациональное, так и иррациональное число.
  • Сумма рационального и иррационального чисел всегда будет иррациональным числом.
  • Сумма иррациональных чисел может быть рациональным числом. Например, пусть x иррациональное, тогда y=x*(-1) тоже иррациональное; x+y=0, а число 0 рациональное (если, например, сложить корень любой степени из 7 и минус корень такой же степени из семи, то получим рациональное число 0).

Иррациональные числа, примеры.

γ ζ (3) — ρ — √2 — √3 — √5 — φ δs α e π δ


Материал этой статьи представляет собой начальную информацию про иррациональные числа . Сначала мы дадим определение иррациональных чисел и разъясним его. Дальше приведем примеры иррациональных чисел. Наконец, рассмотрим некоторые подходы к выяснению, является ли заданное число иррациональным или нет.

Навигация по странице.

Определение и примеры иррациональных чисел

При изучении десятичных дробей мы отдельно рассмотрели бесконечные непериодические десятичные дроби. Такие дроби возникают при десятичном измерении длин отрезков, несоизмеримых с единичным отрезком. Также мы отметили, что бесконечные непериодические десятичные дроби не могут быть переведены в обыкновенные дроби (смотрите перевод обыкновенных дробей в десятичные и обратно), следовательно, эти числа не являются рациональными числами , они представляют так называемые иррациональные числа.

Так мы подошли к определению иррациональных чисел .

Определение.

Числа, которые в десятичной записи представляют собой бесконечные непериодические десятичные дроби, называются иррациональными числами .

Озвученное определение позволяет привести примеры иррациональных чисел . Например, бесконечная непериодическая десятичная дробь 4,10110011100011110000… (количество единиц и нулей каждый раз увеличивается на одну) является иррациональным числом. Приведем еще пример иррационального числа: −22,353335333335… (число троек, разделяющих восьмерки, каждый раз увеличивается на две).

Следует отметить, что иррациональные числа достаточно редко встречаются именно в виде бесконечных непериодических десятичных дробей. Обычно они встречаются в виде , и т.п., а также в виде специально введенных букв. Самыми известными примерами иррациональных чисел в такой записи являются арифметический квадратный корень из двух , число «пи» π=3,141592… , число e=2,718281… и золотое число .

Иррациональные числа также можно определить через действительные числа , которые объединяют рациональные и иррациональные числа.

Определение.

Иррациональные числа – это действительные числа, не являющиеся рациональными.

Является ли данное число иррациональным?

Когда число задано не в виде десятичной дроби, а в виде некоторого , корня, логарифма и т.п., то ответить на вопрос, является ли оно иррациональным, во многих случаях достаточно сложно.

Несомненно, при ответе на поставленный вопрос очень полезно знать, какие числа не являются иррациональными. Из определения иррациональных чисел следует, что иррациональными числами не являются рациональные числа. Таким образом, иррациональными числами НЕ являются:

  • конечные и бесконечные периодические десятичные дроби.

Также не является иррациональным числом любая композиция рациональных чисел, связанных знаками арифметических операций (+, −, ·, :). Это объясняется тем, что сумма, разность, произведение и частное двух рациональных чисел является рациональным числом. Например, значения выражений и являются рациональными числами. Здесь же заметим, что если в подобных выражениях среди рациональных чисел содержится одно единственное иррациональное число, то значение всего выражения будет иррациональным числом. Например, в выражении число - иррациональное, а остальные числа рациональные, следовательно - иррациональное число. Если бы было рациональным числом, то из этого следовала бы рациональность числа , а оно не является рациональным.

Если же выражение, которым задано число, содержит несколько иррациональных чисел, знаки корня, логарифмы, тригонометрические функции, числа π , e и т.п., то требуется проводить доказательство иррациональности или рациональности заданного числа в каждом конкретном случае. Однако существует ряд уже полученных результатов, которыми можно пользоваться. Перечислим основные из них.

Доказано, что корень степени k из целого числа является рациональным числом только тогда, когда число под корнем является k-ой степенью другого целого числа, в остальных случаях такой корень задает иррациональное число. Например, числа и - иррациональные, так как не существует целого числа, квадрат которого равен 7 , и не существует целого числа, возведение которого в пятую степень дает число 15 . А числа и не являются иррациональными, так как и .

Что касается логарифмов, то доказать их иррациональность иногда удается методом от противного. Для примера докажем, что log 2 3 является иррациональным числом.

Допустим, что log 2 3 рациональное число, а не иррациональное, то есть его можно представить в виде обыкновенной дроби m/n . и позволяют записать следующую цепочку равенств: . Последнее равенство невозможно, так как в его левой части нечетное число , а в правой части – четное. Так мы пришли к противоречию, значит, наше предположение оказалось неверным, и этим доказано, что log 2 3 - иррациональное число.

Заметим, что lna при любом положительном и отличном от единицы рациональном a является иррациональным числом. Например, и - иррациональные числа.

Также доказано, что число e a при любом отличном от нуля рациональном a является иррациональным, и что число π z при любом отличном от нуля целом z является иррациональным. К примеру, числа - иррациональные.

Иррациональными числами также являются тригонометрические функции sin , cos , tg и ctg при любом рациональном и отличном от нуля значении аргумента. Например, sin1 , tg(−4) , cos5,7 , являются иррациональными числами.

Существуют и другие доказанные результаты, на мы ограничимся уже перечисленными. Следует также сказать, что при доказательстве озвученных выше результатов применяется теория, связанная с алгебраическими числами и трансцендентными числами .

В заключение отметим, что не стоит делать поспешных выводов относительно иррациональности заданных чисел. К примеру, кажется очевидным, что иррациональное число в иррациональной степени есть иррациональное число. Однако это не всегда так. В качестве подтверждения озвученного факта приведем степень . Известно, что - иррациональное число, а также доказано, что - иррациональное число, но - рациональное число. Также можно привести примеры иррациональных чисел, сумма, разность, произведение и частное которых есть рациональные числа. Более того, рациональность или иррациональность чисел π+e , π−e , π·e , π π , π e и многих других до сих пор не доказана.

Список литературы.

  • Математика. 6 класс: учеб. для общеобразоват. учреждений / [Н. Я. Виленкин и др.]. - 22-е изд., испр. - М.: Мнемозина, 2008. - 288 с.: ил. ISBN 978-5-346-00897-2.
  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

Натуральные числа

Числа, используемые при счете называются натуральными числами. Например, $1,2,3$ и т.д. Натуральные числа образуют множество натуральных чисел, которое обозначают $N$ .Данное обозначение исходит от латинского слова naturalis- естественный.

Противоположные числа

Определение 1

Если два числа отличаются только знаками, их называют в математике противоположными числами.

Например, числа $5$ и $-5$ противоположные числа, т.к. отличаются только знаками.

Замечание 1

Для любого числа есть противоположное число, и притом только одно.

Замечание 2

Число нуль противоположно самому себе.

Целые числа

Определение 2

Целыми числами называют натуральные, противоположные им числа и нуль.

Множество целых чисел включает в себя множество натуральных и противоположных им.

Обозначают целые числа $Z.$

Дробные числа

Числа вида $\frac{m}{n}$ называют дробями или дробными числами. Так же дробные числа можно записывать десятичной форме записи, т.е. в виде десятичных дробей.

Например:$\ \frac{3}{5}$ , $0,08$ и Т.Д.

Так же, как и целые, дробные числа могут быть как положительными, так и отрицательными.

Рациональные числа

Определение 3

Рациональными числами называется множество чисел, содержащее в себе множество целых и дробных чисел.

Любое рациональное число, как целое, так и дробное можно представить в виде дроби $\frac{a}{b}$, где $a$- целое число, а $b$- натуральное.

Таким образом, одно и то же рациональное число можно записать разными способами.

Например,

Отсюда видно, что любое рациональное число может быт представлено в виде конечной десятичной дроби или бесконечной десятичной периодической дроби.

Множество рациональных чисел обозначается $Q$.

В результате выполнения любого арифметического действия над рациональными числами полученный ответ будет рациональным числом. Это легко доказуемо, в силу того, что при сложении, вычитании, умножении и делении обыкновенных дробей получится обыкновенная дробь

Иррациональные числа

В ходе изучения курса математики часто приходится сталкиваться в решении с числами, которые не являются рациональными.

Например, чтобы убедиться в существовании множества чисел, отличных от рациональных решим уравнение $x^2=6$.Корнями этого уравнения будут числа $\surd 6$ и -$\surd 6$. Данные числа не будут являться рациональными.

Так же при нахождении диагонали квадрата со стороной $3$ мы применив теорему Пифагора получим, что диагональ будет равна $\surd 18$. Это число также не является рациональным.

Такие числа называются иррациональными.

Итак, иррациональным числом называют бесконечную десятичную непериодическую дробь.

Одно из часто встречающихся иррациональных чисел- это число $\pi $

При выполнении арифметических действий с иррациональными числами получаемый результат может оказаться и рациональным, так и иррациональным числом.

Докажем это на примере нахождения произведения иррациональным чисел. Найдем:

    $\ \sqrt{6}\cdot \sqrt{6}$

    $\ \sqrt{2}\cdot \sqrt{3}$

Решениею

    $\ \sqrt{6}\cdot \sqrt{6} = 6$

    $\sqrt{2}\cdot \sqrt{3}=\sqrt{6}$

На этом примере видно, что результат может оказаться как рациональным, так и иррациональным числом.

Если в арифметических действиях участвуют рациональное и иррациональные числа одновременно, то в результате получится иррациональное число (кроме, конечно, умножения на $0$).

Действительные числа

Множеством действительных чисел называется множество содержащее множество рациональных и иррациональных чисел.

Обозначается множество действительных чисел $R$. Символически множество действительных чисел можно обозначить $(-?;+?).$

Мы говорили ранее о том, что иррациональным числом называют бесконечную десятичную непериодическую дробь, а любое рациональное число может быт представлено в виде конечной десятичной дроби или бесконечной десятичной периодической дроби, поэтому действительным числом будет являться любая конечная и бесконечная десятичная дробь.

При выполнении алгебраических действий будут выполняться следующие правила

  1. при умножении и делении положительных чисел полученное число будет положительным
  2. при умножении и делении отрицательных чисел полученное число будет положительным
  3. при умножении и делении отрицательного и положительного чисел полученное число будет отрицательным

Также действительные числа можно сравнивать друг с другом.

С отрезком единичной длины, знали уже древние математики: им была известна, например, несоизмеримость диагонали и стороны квадрата, что равносильно иррациональности числа .

Иррациональными являются:

Примеры доказательства иррациональности

Корень из 2

Допустим противное: рационален , то есть представляется в виде несократимой дроби , где и - целые числа . Возведём предполагаемое равенство в квадрат:

.

Отсюда следует, что чётно, значит, чётно и . Пускай , где целое. Тогда

Следовательно, чётно, значит, чётно и . Мы получили, что и чётны, что противоречит несократимости дроби . Значит, исходное предположение было неверным, и - иррациональное число.

Двоичный логарифм числа 3

Допустим противное: рационален , то есть представляется в виде дроби , где и - целые числа . Поскольку , и могут быть выбраны положительными. Тогда

Но чётно, а нечётно. Получаем противоречие.

e

История

Концепция иррациональных чисел была неявным образом воспринята индийскими математиками в VII веке до нашей эры, когда Манава (ок. 750 г. до н. э. - ок. 690 г. до н. э.) выяснил, что квадратные корни некоторых натуральных чисел, таких как 2 и 61, не могут быть явно выражены.

Первое доказательство существования иррациональных чисел обычно приписывается Гиппасу из Метапонта (ок. 500 гг. до н. э.), пифагорейцу , который нашёл это доказательство, изучая длины сторон пентаграммы. Во времена пифагорейцев считалось, что существует единая единица длины, достаточно малая и неделимая, которая целое число раз входит в любой отрезок. Однако Гиппас обосновал, что не существует единой единицы длины, поскольку предположение о её существовании приводит к противоречию. Он показал, что если гипотенуза равнобедренного прямоугольного треугольника содержит целое число единичных отрезков, то это число должно быть одновременно и четным, и нечетным. Доказательство выглядело следующим образом:

  • Отношение длины гипотенузы к длине катета равнобедренного прямоугольного треугольника может быть выражено как a :b , где a и b выбраны наименьшими из возможных.
  • По теореме Пифагора: a ² = 2b ².
  • Так как a ² четное, a должно быть четным (так как квадрат нечетного числа был бы нечетным).
  • Поскольку a :b несократима, b обязано быть нечетным.
  • Так как a четное, обозначим a = 2y .
  • Тогда a ² = 4y ² = 2b ².
  • b ² = 2y ², следовательно b ² четное, тогда и b четно.
  • Однако было доказано, что b нечетное. Противоречие.

Греческие математики назвали это отношение несоизмеримых величин алогос (невыразимым), однако согласно легендам не воздали Гиппасу должного уважения. Существует легенда, что Гиппас совершил открытие, находясь в морском походе, и был выброшен за борт другими пифагорейцами «за создание элемента вселенной, который отрицает доктрину, что все сущности во вселенной могут быть сведены к целым числам и их отношениям». Открытие Гиппаса поставило перед пифагорейской математикой серьёзную проблему, разрушив лежавшее в основе всей теории предположение, что числа и геометрические объекты едины и неразделимы.

См. также

Примечания



Похожие статьи