Формула численного интегрирования метода симпсона имеет вид. Старт в науке

Суть метода Симпсона заключается в приближении подынтегральной функции на отрезке интерполяционным многочленом второй степени p2(x), т.е. приближение графика функции на отрезке параболой. Для интерполирования подынтегральной функции используются три точки.

Рассмотрим произвольный интеграл. Воспользуемся заменой переменной таким образом, чтобы границы отрезка интегрирования вместо стали [-1,1]. Для этого введем переменную z:

Рассмотрим задачу интерполирования подынтегральной функции, используя в качестве узлов три равноудаленные узловые точки z = -1, z = 0, z = +1 (шаг равен 1, длина отрезка интегрирования равна 2). Обозначим соответствующие значения подынтегральной функции в узлах интерполяции:

Система уравнений для нахождения коэффициентов полинома, проходящего через три точки (-1, f-1), (0, f0) и(1, f-+1) примет вид:

Коэффициенты легко могут быть получены:

Вычислим теперь значение интеграла от интерполяционного многочлена:

Путем обратной замены переменной вернемся к исходному интегралу. Учтем, что:

соответствует

соответствует

соответствует

Получим формулу Симпсона для произвольного интервала интегрирования:

Полученное значение совпадает с площадью криволинейной трапеции, ограниченной осью x, прямыми x = x0, x = x2 и параболой, проходящей через точки

При необходимости, исходный отрезок интегрирования может быть разбит на N сдвоенных отрезков, к каждому из которых применяется формула Симпсона. Шаг интерполирования при этом составит:

Для первого отрезка интегрирования узлами интерполирования будут являться точки a, a+h, a+2h, для второго a+2h, a+3h, a+4h, третьего a+4h, a+5h, a+6h и т.д. Приближенное значение интеграла получается суммированием N площадей:

интегрирование численный метод симпсон

В данную сумму входят одинаковые слагаемые (для внутренних узлов с четным значением индекса - 2i). Поэтому можно перегруппировать слагаемые в этой сумме таким образом:

Приняв во внимание то, что получаем:

Оценим теперь погрешность интегрирования по формуле Симпсона. Будем считать, что у функции на отрезкесуществуют непрерывные производные. Составим разность:

Применяя к этой разнице последовательно теорему о среднем и дифференцируя R(h) получаем погрешность метода Симпсона:

Погрешность метода уменьшается пропорционально длине шага интегрирования в четвертой степени, т.е. при увеличении числа интервалов вдвое ошибка уменьшается в 16 раз.

Преимущества и недостатки

Формулы Симпсона и Ньютона-Котеса являются хорошим аппаратом для вычисления определенного интеграла достаточное число раз непрерывно дифференцируемой функции. Так, при условии, что четвертая производная не слишком велика, метод Симпсона позволяет получить достаточно высокую точность. В то же время, ее алгебраический порядок точности 3, и формула Симпсона является точной для многочленов степени не выше третьей.

Также методы Ньютона-Котеса и в частности метод Симпсона будут наиболее эффективными в случаях, когда априорная информация о гладкости подынтегральной функции отсутствует, т.е. когда подынтегральная функция задана таблично.

Кафедра «Высшей математики»

Выполнил: Матвеев Ф.И.

Проверила: Бурлова Л.В.

Улан-Удэ.2002

1.Численные методы интегрирования

2.Вывод формулы Симпсона

3.Геометрическая иллюстрация

4.Выбор шага интегрирования

5.Примеры

1. Численные методы интегрирования

Задача численного интегрирования заключается в вычислении интеграла

посредством ряда значений подынтегральной функции .

Задачи численного интегрирования приходится решать для функций, заданных таблично, функцией, интегралы от которых не берутся в элементарных функциях, и т.д. Рассмотрим только функции одной переменной.

Вместо функции, которую требуется проинтегрировать, проинтегрируем интерполяционный многочлен. Методы, основанные на замене подынтегральной функции интерполяционным многочленом, позволяют по параметрам многочлена оценить точность результата или же по заданной точности подобрать эти параметры.

Численные методы условно можно сгруппировать по способу аппроксимации подынтегральной функции.

Методы Ньютона-Котеса основаны на аппроксимации функции

полиномом степени . Алгоритм этого класса отличается только степенью полинома. Как правило, узлы аппроксимирующего полинома – равноотносящие.

Методы сплайн-интегрирования базируются на аппроксимации функции

сплайном-кусочным полиномом.

В методах наивысшей алгебраической точности (метод Гаусса) используются специально выбранные неравноотносящие узлы, обеспечивающие минимальную погрешность интегрирования при заданном (выбранном) количестве узлов.

Методы Монте-Карло используются чаще всего при вычислении кратных интегралов, узлы выбираются случайным образом, ответ носит вероятностный характер.


суммарная погрешность погрешность усечения

погрешность округления

Независимо от выбранного метода в процессе численного интегрирования необходимо вычислить приближенное значение интеграла и оценить погрешность. Погрешность уменьшается при увеличении n-количества

разбиений отрезка

. Однако при этом возрастает погрешность округления

за счет суммирования значений интегралов, вычисленных на частичных отрезках.

Погрешность усечения зависит от свойств подынтегральной функции и длины

частичного отрезка.

2. Вывод формулы Симпсона

Если для каждой пары отрезков

построить многочлен второй степени, затем проинтегрировать его и воспользоваться свойством аддитивности интеграла, то получим формулу Симпсона. Рассмотрим подынтегральную функцию на отрезке . Заменим эту подынтегральную функцию интерполяционным многочленом Лагранжа второй степени, совпадающим с в точках :

Проинтегрируем

:

и называется формулой Симпсона.

Полученное для интеграла

значение совпадает с площадью криволинейной трапеции, ограниченной осью , прямыми , и параболой, проходящей через точки

Оценим теперь погрешность интегрирования по формуле Симпсона. Будем считать, что у

на отрезке существуют непрерывные производные . Составим разность

К каждому из этих двух интегралов уже можно применить теорему о среднем, поскольку

непрерывна на и функция неотрицательна на первом интервале интегрирования и неположительна на втором (то есть не меняет знака на каждом из этих интервалов). Поэтому:

(мы воспользовались теоремой о среднем, поскольку

- непрерывная функция; ).

Дифференцируя

дважды и применяя затем теорему о среднем, получим для другое выражение: , где

Из обеих оценок для

следует, что формула Симпсона является точной для многочленов степени не выше третьей. Запишем формулу Симпсона, напрмер, в виде: , .

Если отрезок

интегрирования слишком велик, то его разбивают на равных частей (полагая ), после чего к каждой паре соседних отрезков , ,..., применяют формулу Симпсона, именно:

Запишем формулу Симпсона в общем виде.

Метод парабол (Симпсона)

Суть метода, формула, оценка погрешности.

Пусть функция y = f(x) непрерывна на отрезке и нам требуется вычислить определенный интеграл.

Разобьем отрезок на n элементарных

отрезков [;], i = 1., n длины 2*h = (b-a)/ n точками

a = < < < < = b. Пусть точки, i = 1., n являются серединами отрезков [;], i = 1., n соответственно. В этом случае все «узлы» определяются из равенства = a + i*h, i = 0,1., 2*n.

На каждом интервале [;], i = 1,2., n подынтегральная функция

приближается квадратичной параболой y = a* + b*x + c, проходящей через точки (; f ()), (; f ()), (; f ()). Отсюда и название метода - метод парабол.

Это делается для того, чтобы в качестве приближенного значения определенного интеграла взять, который мы можем вычислить по формуле Ньютона-Лейбница. В этом и заключается суть метода парабол .

Вывод Формулы Симпсона.

Для получения формулы метода парабол (Симпсона) нам осталось вычислить

Покажем, что через точки (; f ()), (; f ()), (; f ()) проходит только одна квадратичная парабола y = a* + b*x + c. Другими словами, докажем, что коэффициенты, определяются единственным образом.

Так как (; f ()), (; f ()), (; f ()) - точки параболы, то справедливо каждое из уравнений системы

Записанная система уравнений есть система линейных алгебраических уравнений относительно неизвестных переменных, . Определителем основной матрицы этой системы уравнений является определитель Вандермонда, а он отличен от нуля для несовпадающих точек,. Это указывает на то, что система уравнений имеет единственное решение (об этом говорится в статье решение систем линейных алгебраических уравнений), то есть, коэффициенты, определяются единственным образом, и через точки (; f ()), (; f ()), (; f ()) проходит единственная квадратичная парабола.

Перейдем к нахождению интеграла.

Очевидно:

f () = f(0) = + + =

f () = f(h) = + +

f () = f (2*h) = + +

Используем эти равенства, чтобы осуществить последний переход в следующей цепочке равенств:

= = (++) = h/3*(f ()+4*f ()+f ())

Таким образом, можно получить формулу метода парабол:

Пример метода Симпсона.

Вычислить приближенно определенный интеграл по формуле Симпсона с точностью до 0,001. Разбиение начать с двух отрезков

Интеграл, кстати, не берущийся.

Решение: Сразу обращаю внимание на тип задания - необходимо вычислить определенный интеграл с определенной точностью . Как и для метода трапеций, существует формула, которая сразу позволит определить нужное количество отрезков, чтобы гарантированно достичь требуемой точности. Правда, придётся находить четвертую производную и решать экстремальную задачу. На практике практически всегда используется упрощенный метод оценки погрешности.

Начинаю решать. Если у нас два отрезка разбиения, то узлов будет на один больше : , . И формула Симпсона принимает весьма компактный вид:

Вычислим шаг разбиения:

Заполним расчетную таблицу:

В верхнюю строку записываем «счётчик» индексов

Во второй строке сначала пишем нижний предел интегрирования a = = 1.2, а затем последовательно приплюсовываем шаг h = 0.4.

В третью строку заносим значения подынтегральной функции. Например, если = 1.6, то. Сколько оставлять знаков после запятой? Действительно, в условии опять об этом ничего не сказано. Принцип тот же, что и в методе трапеций, смотрим на требуемую точность: 0,001. И прибавляем дополнительно 2-3 разряда. То есть, округлять нужно до 5-6 знаков после запятой.

В результате:

Первичный результат получен. Теперь удваиваем количество отрезков до четырёх: . Формула Симпсона для данного разбиения принимает следующий вид:

Вычислим шаг разбиения:

Заполним расчетную таблицу:

Таким образом:

Оцениваем погрешность:


Погрешность больше требуемой точности: 0,002165 > 0,001, поэтому необходимо еще раз удвоить количество отрезков: .

Формула Симпсона становится больше:

Вычислим шаг:

И снова заполним расчетную таблицу:

Таким образом:


Заметим, что здесь вычисления желательно уже расписать более подробно, поскольку формула Симпсона достаточно громоздка:

Оцениваем погрешность:

Погрешность меньше требуемой точности: 0,000247 < 0,001. Осталось взять наиболее точное приближение, округлить его до трёх знаков после запятой и записать.

Разобьем отрезок интегрирования [а , b ] на четное число n равных частей с шагом h . На каждом отрезке [х 0, х 2], [х 2, х 4],..., [x i-1, x i+1],..., [x n-2, x n] подынтегральную функцию f (х ) заменим интерполяционным многочленом второй степени:

Коэффициенты этих квадратных трехчленов можно найти из условий равенства многочлена в точках соответствующим табличным данным . В качестве можно принять интерполяционный многочлен Лагранжа второй степени, проходящий через точки :

Сумму элементарных площадей и (рис. 3.3) можно вычислить с помощью определенного интеграла. Учитывая равенства получаем

-

Рис. 3.3. Иллюстрация к методу Симпсона

Проведя такие вычисления для каждого элементарного отрезка , просуммируем полученные выражения:

Данное выражение для S принимается в качестве значения определенного интеграла:

(3.35)

Полученное соотношение называется формулой Симпсона или формулой парабол .

Эту формулу можно получить и другими способами, например двукратным применением метода трапеций при разбиениях отрезка [а , b ] на части с шагами h и 2h или комбинированием формул прямоугольников и трапеций (см. разд. 3.2.6).

Иногда формулу Симпсона записывают с применением полуцелых индексов. В этом случае число отрезков разбиения п произвольно (не обязательно четно), и формула Симпсона имеет вид

(3.36)

Легко видеть, что формула (3.36) совпадет с (3.35), если формулу (3.35) применить для числа отрезков разбиения 2n и шага h /2.

Пример . Вычислить по методу Симпсона интеграл

Значения функции при n = 10, h = 0.1 приведены в табл. 3.3. Применяя формулу (3.35), находим

Результат численного интегрирования с использованием метода Симпсона оказался совпадающим с точным значением (шесть значащих цифр).

Один из возможных алгоритмов вычисления определенного интеграла по методу Симпсона показан на рис. 3.4. В качестве исходных данных задаются границы отрезка интегрирования [а , b ],погрешность ε, а также формула для вычисления значений подынтегральной функции у = f (x ) .

Рис. 3.4. Алгоритм метода Симпсона

Первоначально отрезок разбивается на две части с шагом h =(b - a)/2. Вычисляется значение интеграла I 1. Потом число шагов удваивается, вычисляется значение I 2 с шагом h /2. Условие окончание счета принимается в виде . Если это условие не выполнено, происходит новое деление шага пополам и т.д.

Отметим, что представленный на рис. 3.4 алгоритм не является оптимальным: при вычислении каждого приближения I 2 не используются значения функции f (x ), уже найденные на предыдущем этапе. Более экономичные алгоритмы будут рассмотрены в разд. 3.2.7.

Возникает задача о численном вычислении определенного интеграла, решаемая с помощью формул, носящих название квад­ратурных.

Напомним простейшие формулы численного интегрирования.

Вычислим приближенное численное значение . Интервал интегрирования [а, b] разобьем на п равных частей точками деле­ния
, называемыми узлами квадра­турной формулы. Пусть в узлах известны значения
:


Величина

называется интервалом интегрирования или шагом. Отметим, что в практике -вычислений число я выбирают небольшим, обычно оно не больше 10-20.На частичном интервале

подынтегральную функцию заменяют интерполяционным много­членом


который на рассматриваемом интервале приближенно представ­ляет функцию f (х).

а) Удержим в интерполяционном многочлене только один первый член, тогда


Полученная квадратная формула

называется формулой прямоугольников.

б) Удержим в интерполяционном многочлене два первых члена, тогда

(2)

Формула (2) называется формулой трапеций.

в) Интервал интегрирования
разобьем на четное число 2n равных частей, при этом шаг интегрирования h будет равен. На интервале
длиной 2h подынтегральную функцию заменим интерполяционным многочленом второй сте­пени, т. е. удержим в многочлене три первых члена:

Полученная квадратурная формула называется формулой Симп­сона

(3)

Формулы (1), (2) и (3) имеют простой геометрический смысл. В формуле прямоугольников подынтегральная функция f(х) на интервале
заменяется отрезком прямой у = ук, параллельной оси абсцисс, а в формуле трапеций - отрезком прямой
и вычисляется соответственно площадь прямо­угольника и прямолинейной трапеции, которые затем сумми­руются. В формуле Симпсона функция f(х) на интервале
длиной 2h заменяется квадратным трехчленом - параболой
вычисляется площадь криволинейной параболической трапеции, затем площади суммируются.

ЗАКЛЮЧЕНИЕ

В завершении работы, хочется отметить ряд особенностей применения рассмотренных выше методов. Каждый способ приближённого решения определённого интеграла имеет свои преимущества и недостатки, в зависимости от поставленной задачи следует использовать конкретные методы.

Метод замены переменных является одним из основных методов вычисления неопределенных интегралов. Даже в тех случаях, когда мы интегрируем каким-либо другим методом, нам часто приходится в промежуточных вычислениях прибегать к замене переменных. Успех интегрирования зависит в значительной степени от того, сумеем ли мы подобрать такую удачную замену переменных, которая упростила бы данный интеграл.

По существу говоря изучение методов интегрирования сводится к выяснению того, какую надо сделать замену переменной при том или ином виде подынтегрального выражения.

Таким образом, интегрирование всякой рациональной дроби сводится к интегрированию многочлена и нескольких простейших дробей.

Интеграл от любой рациональной функции может быть выражен через элементарные функции в конечном виде, а именно:

    через логарифмы- в случаях простейших дробей 1 типа;

    через рациональные функции- в случае простейших дробей 2 типа

    через логарифмы и арктангенсы- в случае простейших дробей 3 типа

    через рациональные функции и арктангенсы- в случае простейших дробей 4 типа. Универсальная тригонометрическая подстановка всегда рационализирует подынтегральную функцию, однако часто она приводит к очень громоздким рациональным дробям, у которых, в частности, практически невозможно найти корни знаменателя. Поэтому при возможности применяются частные подстановки, которые тоже рационализируют подынтегральную функцию и приводят к менее сложным дробям.

Формула Ньютона – Лейбница представляет собой общий подход к нахождению определенных интегралов.

Что касается приемов вычисления определенных интегралов, то они практически ничем не отличаются от всех тех приемов и методов.

Точно так же применяются методы подстановки (замены переменной), метод интегрирования по частям, те же приемы нахождения первообразных для тригонометрических, иррациональных и трансцендентных функций. Особенностью является только то, что при применении этих приемов надо распространять преобразование не только на подинтегральную функцию, но и на пределы интегрирования. Заменяя переменную интегрирования, не забыть изменить соответственно пределы интегрирования.

Как следует из теоремы, условие непрерывности функции яв­ляется достаточным условием интегрируемости функции. Но это не означает, что определенный интеграл существует только для непрерывных функций. Класс интегрируемых функций гораздо шире. Так, например, существует определенный интеграл от функ­ций, имеющих конечное число точек разрыва.

Вычис­ление определенного интеграла от непрерывной функции с по­мощью формулы Ньютона-Лейбница сводится к нахождению первообразной, которая всегда существует, но не всегда явля­ется элементарной функцией или функцией, для которой состав­лены таблицы, дающие возможность получить значение интеграла. В многочисленных приложениях интегрируемая функция зада­ется таблично и формула Ньютона - Лейбница непосредственно неприменима.

Если необходимо получить наиболее точный результат, идеально подходит метод Симпсона .

Из выше изученного можно сделать следующий вывод, что интеграл используется в таких науках как физика, геометрия, математика и других науках. При помощи интеграла вычисляют работу силы, находят координаты центр масс, путь пройденный материальной точкой. В геометрии используется для вычисления объема тела, нахождение длины дуги кривой и др.



Похожие статьи