Функция распределения и плотность вероятности в MS EXCEL. Математическое ожидание непрерывной случайной величины

Свойства плотности распределения

Для начала напомним, что такое плотность распределения:

Рассмотрим свойства плотности распределения:

Свойство 1: Функция $\varphi (x)$ плотности распределения неотрицательна:

Доказательство.

Мы знаем, что функция распределения $F(x)$ - неубывающая функция. Из определения следует, что $\varphi \left(x\right)=F"(x)$, а производная неубывающей функции -- есть функция неотрицательная.

Геометрически это свойство означает, то график функции $\varphi \left(x\right)$ плотности распределения находится либо выше, либо на самой оси $Ox$ (рис. 1)

Рисунок 1. Иллюстрация неравенства $\varphi (x)\ge 0$.

Свойство 2: Несобственный интеграл от функции плотности распределения пределах от $-\infty $ до $+\infty $ равен 1:

Доказательство.

Вспомним формулу для нахождения вероятности того, что случайная величина попадет интервал $(\alpha ,\beta)$:

Рисунок 2.

Найдем вероятность того, что случайная величина попадет в интервал $(-\infty ,+\infty $):

Рисунок 3.

Очевидно, что случайная величина всегда попадет в интервал $(-\infty ,+\infty $), следовательно, вероятность такого попадания равна единице. Получаем:

Геометрически, второе свойство означает, что площадь криволинейной трапеции, ограниченной графиком функции плотности распределения $\varphi (x)$ и осью абсцисс численно равна единице.

Можно также сформулировать обратное свойство:

Свойство 3: Любая неотрицательная функция $f(x)\ge 0$, удовлетворяющая равенству $\int\limits^{+\infty }_{-\infty }{f\left(x\right)dx}=1$ является функцией плотность распределения некоторой непрерывной случайной величины.

Вероятностный смысл плотности распределения

Придадим переменной $x$ приращение $\triangle x$.

Вероятностный смысл плотности распределения: Вероятность того, что непрерывная случайная величина $X$ примет значения из интервала$(x,x+\triangle x)$, приближенно равна произведению плотности распределения вероятности в точке $x$ на приращение $\triangle x$:

Рисунок 4. Геометрическая иллюстрация вероятностного смысла плотности распределения непрерывной случайной величины.

Примеры решения задач с использованием свойств плотности распределения

Пример 1

Функция плотности распределения вероятности имеет вид:

Рисунок 5.

  1. Найти коэффициент $\alpha $.
  2. Построить график плотности распределения.
  1. Рассмотрим несобственный интеграл $\int\limits^{+\infty }_{-\infty }{\varphi \left(x\right)dx}$, получаем:

Рисунок 6.

Используя свойство 2, получим:

\[-2\alpha =1,\] \[\alpha =-\frac{1}{2}.\]

То есть, функция плотности распределения имеет вид:

Рисунок 7.

  1. Построим её график:

Рисунок 8.

Пример 2

Функция плотности распределения имеет вид $\varphi \left(x\right)=\frac{\alpha }{chx}$

(Напомним, что $chx$ -- гиперболический косинус).

Найти значение коэффициента $\alpha $.

Решение. Используем второе свойство:

\[\int\limits^{+\infty }_{-\infty }{\frac{\alpha }{chx}dx}=1,\] \[\alpha \int\limits^{+\infty }_{-\infty }{\frac{dx}{chx}}=1,\] \[\int\limits^{+\infty }_{-\infty }{\frac{dx}{chx}}={\mathop{lim}_{a\to -\infty } \int\limits^0_a{\frac{dx}{chx}}\ }+{\mathop{lim}_{b\to +\infty } \int\limits^b_0{\frac{dx}{chx}}\ }\]

Так как $chx=\frac{e^x+e^{-x}}{2}$, то

\[\int{\frac{dx}{chx}}=2\int{\frac{dx}{e^x+e^{-x}}}=2\int{\frac{de^x}{{1+e}^{2x}}}=2arctge^x+C\]

\[\int\limits^{+\infty }_{-\infty }{\frac{dx}{chx}}={\mathop{lim}_{a\to -\infty } \left(-2arctge^a\right)\ }+{\mathop{lim}_{b\to +\infty } \left(2arctge^b\right)\ }=\pi \]

Следовательно:

\[\pi \alpha =1,\] \[\alpha =\frac{1}{\pi }\]

Результат любого случайного эксперимента можно характеризовать качественно и количественно. Качественный результат случайного эксперимента - случайное событие . Любая количественная характеристика , которая в результате случайного эксперимента может принять одно из некоторого множества значений, - случайная величина. Случайная величина является одним из центральных понятий теории вероятностей.

Пусть - произвольное вероятностное пространство. Случайной величиной называется действительная числовая функция x =x (w ), w W , такая, что при любом действительном x .

Событие принято записывать в виде x < x . В дальнейшем случайные величины будем обозначать строчными греческими буквами x , h , z , …

Случайной величиной является число очков, выпавших при бросании игральной кости, или рост случайно выбранного из учебной группы студента. В первом случае мы имеем дело с дискретной случайной величиной (она принимает значения из дискретного числового множества M= {1, 2, 3, 4, 5, 6} ; во втором случае - с непрерывной случайной величиной (она принимает значения из непрерывного числового множества - из промежутка числовой прямой I =).

Каждая случайная величина полностью определяется своей функцией распределения .

Если x .- случайная величина, то функция F (x ) = F x (x ) = P (x < x ) называется функцией распределения случайной величины x . Здесь P (x < x ) - вероятность того, что случайная величина x принимает значение, меньшее x .

Важно понимать, что функция распределения является “паспортом” случайной величины: она содержит всю информация о случайной величине и поэтому изучение случайной величины заключается в исследовании ее функции распределения, которую часто называют просто распределением .

Функция распределения любой случайной величины обладает следующими свойствами:

Если x - дискретная случайная величина, принимающая значения x 1 < x 2 < … < x i < … с вероятностями p 1 < p 2 < … < p i < …, то таблица вида

x 1 x 2 x i
p 1 p 2 p i

называется распределением дискретной случайной величины .

Функция распределения случайной величины, с таким распределением, имеет вид

У дискретной случайной величины функция распределения ступенчатая. Например, для случайного числа очков, выпавших при одном бросании игральной кости, распределение, функция распределения и график функции распределения имеют вид:

1 2 3 4 5 6
1/6 1/6 1/6 1/6 1/6 1/6

Если функция распределения F x (x ) непрерывна, то случайная величина x называется непрерывной случайной величиной.

Если функция распределения непрерывной случайной величины дифференцируема , то более наглядное представление о случайной величине дает плотность вероятности случайной величины p x (x ), которая связана с функцией распределения F x (x ) формулами

и .

Отсюда, в частности, следует, что для любой случайной величины .

При решении практических задач часто требуется найти значение x , при котором функция распределения F x (x ) случайной величины x принимает заданное значение p , т.е. требуется решить уравнение F x (x ) = p . Решения такого уравнения (соответствующие значения x ) в теории вероятностей называются квантилями.

Квантилью x p (p -квантилью, квантилью уровня p ) случайной величины , имеющей функцию распределения F x (x ), называют решение x p уравнения F x (x ) = p , p (0, 1). Для некоторых p уравнение F x (x ) = p может иметь несколько решений, для некоторых - ни одного. Это означает, что для соответствующей случайной величины некоторые квантили определены неоднозначно, а некоторые кванитили не существуют.

Функция распределения является наиболее общей формой задания закона распределения. Она используется для задания как дискретных, так и непрерывных случайных величин. Обычно ее обозначают .Функция распределения определяет вероятность того, что случайная величина принимает значения, меньшие фиксированного действительного числа, т. е.. Функция распределения полностью характеризует случайную величину с вероятностной точки зрения. Ее еще называют интегральной функцией распределения.

Геометрическая интерпретация функции распределения очень проста. Если случайную величину рассматривать как случайную точку оси(рис. 6), которая в результате испытания может занять то или иное положение на этой оси, то функция распределенияесть вероятность того, что случайная точкав результате испытания попадет левее точки.

Для дискретной случайной величины , которая может принимать значения,, … ,, функция распределения имеет вид

,

где неравенство под знаком суммы означает, что суммирование распространяется на все те значения, которые по своей величине меньше. Из этой формулы следует, что функция распределения дискретной случайной величиныразрывна и возрастает скачками при переходе через точки,, … ,, причем величина скачка равна вероятности соответствующего значения (рис. 7). Сумма всех скачков функции распределения равна единице.

Непрерывная случайная величина имеет непрерывную функцию распределения, график этой функции имеет форму плавной кривой (рис. 8).

Рис. 7. Рис. 8.

Рассмотрим общие свойства функций распределения.

Свойство 1. Функция распределения есть неотрицательная функция, заключенная между нулем и единицей:

Справедливость этого свойства вытекает из того, что функция распределения определена как вероятность случайного события, состоящего в том, что.

Свойство 2. Вероятность попадания случайной величины в интервал равна разности значений функции распределения на концах этого интервала, т. е.

Отсюда следует, что вероятность любого отдельного значения непрерывной случайной величины равна нулю.

Свойство 3. Функция распределения случайной величины есть неубывающая функция, т. е. при .

Свойство 4. На минус бесконечности функция распределения рана нулю, а на плюс бесконечности функция распределения рана единице, т. е. ,.

Пример 1. Функция распределения непрерывной случайной величины задана выражением

Найти коэффициент и построить график. Определить вероятность того, что случайная величинав результате опыта примет значение на интервале.

Решение. Так как функция распределения непрерывной случайной величины непрерывна, то приполучим:. Отсюда. График функцииизображен на рис. 9.

Исходя из второго свойства функции распределения, имеем:

.

4. Плотность распределения вероятности и ее свойства.

Функция распределения непрерывной случайной величины является ее вероятностной характеристикой. Но она имеет недостаток, заключающийся в том, что по ней трудно судить о характере распределения случайной величины в небольшой окрестности той или другой точки числовой оси. Более наглядное представление о характере распределения непрерывной случайной величины дает функция, которая называется плотностью распределения вероятности или дифференциальной функцией распределения случайной величины.

Плотность распределения равна производной от функции распределения, т. е.

.

Смысл плотности распределения состоит в том, что она указывает на то, как часто появляется случайная величинав некоторой окрестности точкипри повторении опытов. Кривая, изображающая плотность распределенияслучайной величины, называетсякривой распределения .

Рассмотрим свойства плотности распределения.

Свойство 1. Плотность распределения неотрицательна, т. е.

Свойство 2. Функция распределения случайной величины равна интегралу от плотности в интервале от до, т. е.

.

Свойство 3. Вероятность попадания непрерывной случайной величины на участокравна интегралу от плотности распределения, взятому по этому участку, т. е.

.

Свойство 4. Интеграл в бесконечных пределах от плотности распределения равен единице:

.

Пример 2. Случайная величина подчинена закону распределения с плотностью

Определить коэффициент ; построить график плотности распределения; найти вероятность попадания случайной величины на участок отдо; определить функцию распределения и построить ее график.

Решение. Площадь, ограниченная кривой распределения, численно равна

.

Учитывая свойство 4 плотности распределения, находим: . Следовательно, плотность распределения может быть выражена так:

График плотности распределения изображен на рис. 10. По свойству 3 имеем

.

Для определения функции распределения воспользуемся свойством 2:

.

Таким образом, имеем

График функции распределения изображен на рис. 11.

Определение . Непрерывной называют случайную величину, которая может принимать все значения из некоторого конечного или бесконечного промежутка.

Для непрерывной случайной величины вводится понятие функции распределения.

Определение. Функцией распределения вероятностей случайной величины Х называют функцию F(х), определяющую для каждого значения x вероятность того, что случайная величина Х примет значение меньшее x, то есть:

F(х) = P(X < x)

Часто вместо термина «функция распределения» используют термин «интегральная функция распределения».

Свойства функции распределения:

1. Значения функции распределения принадлежат отрезку:

0 ≤ F(х) ≤ 1.

2. Функция распределения есть неубывающая функция, то есть:

если x > x ,

то F(x ) ≥ F(x ).

3. Вероятность того, что случайная величина примет значение, заключенное в интервале }

Похожие статьи