Что такое касательная к окружности? Свойства касательной к окружности. Общая касательная к двум окружностям

Чаще всего именно геометрические задачи вызывают затруднения у абитуриентов, выпускников, участников математических олимпиад. Если посмотреть статистику ЕГЭ 2010 года, то видно, что к геометрической задаче С4 приступило около 12% участников, а получило полный балл только 0,2% участников, а в целом задача оказалась самой сложной из всех предложенных.

Очевидно, что чем раньше мы предложим школьникам красивые или неожиданные по способу решения задачи, тем больше вероятность заинтересовать и увлечь всерьёз и надолго. Но, как же трудно найти интересные и сложные задачи на уровне 7 класса, когда только начинается систематическое изучение геометрии. Что можно предложить интересующемуся математикой школьнику, знающему только признаки равенства треугольников, свойства смежных и вертикальных углов? Однако, можно ввести понятие касательной к окружности, как прямой, имеющей с окружностью одну общую точку; принять, что радиус, проведённый в точку касания, перпендикулярен касательной. Конечно, стоит рассмотреть все возможные случаи расположения двух окружностей и общих касательных к ним, которых можно провести от нуля до четырёх. Доказав ниже предложенные теоремы, можно значительно расширить набор задач для семиклассников. При этом попутно доказать важные или просто интересные и занимательные факты. Причём, поскольку многие утверждения не входят в школьный учебник, то обсуждать их можно и на занятиях кружка и с выпускниками при повторении планиметрии. Актуальными эти факты оказались в прошлом учебном году. Так как многие диагностические работы и сама работа ЕГЭ содержали задачу, для решения которой необходимо было использовать доказываемое ниже свойство отрезка касательной.

Т 1 Отрезки касательных к окружности, проведённые из
одной точки равны (рис. 1)

Вот именно с теоремой можно сначала познакомить семиклассников.
В процессе доказательства использовали признак равенства прямоугольных треугольников, сделали вывод о том, что центр окружности лежит на биссектрисе угла ВСА .
Попутно вспомнили, что биссектриса угла есть геометрическое место точек внутренней области угла, равноудалённых от его сторон. На этих доступных даже только начинающим изучать геометрию фактах основывается решение уже далеко нетривиальной задачи.

1. Биссектрисы углов А , В и С выпуклого четырёхугольника АВСD пересекаются в одной точке. Лучи АВ и DC пересекаются в точке Е , а лучи
ВС и АD в точке F . Докажите, что у невыпуклого четырёхугольника AECF суммы длин противоположных сторон равны.

Решение (рис. 2). Пусть О – точка пересечения данных биссектрис. Тогда О равноудалена от всех сторон четырёхугольника АВСD , то есть
является центром окружности вписанной в четырёхугольник. По теореме 1 верны равенства: AR = AK , ER = EP , FT = FK . Почленно сложим левые и правые части, получим верное равенство:

(AR + ER ) + FT = (AK +FK ) + EP ; AE + (FC + CT ) = AF + (ЕC + PC ). Так как СТ = РС , то АЕ + FC = AF + ЕC , что и требовалось доказать.

Рассмотрим необычную по формулировке задачу, для решения которой достаточно знание теоремы 1 .

2. Существует ли n -угольник, стороны которого последовательно 1, 2, 3, …, n , в который можно вписать окружность?

Решение. Допустим, такой n -угольник существует. А 1 А 2 =1, …, А n-1 А n = n – 1, А n А 1 = n . B 1 , …, B n – соответствующие точки касания. Тогда по теореме 1 A 1 B 1 = A 1 B n < 1, n – 1 < A n B n < n. По свойству отрезков касательных A n B n = A n B n-1 . Но, A n B n-1 < A n-1 А n = n – 1. Противоречие. Следовательно, нет n -угольника, удовлетворяющего условию задачи.


Т 2 Суммы противолежащих сторон четырёхугольника, описанного около
окружности, равны (рис. 3)

Школьники, как правило, легко доказывают это свойство описанного четырёхугольника. После доказательства теоремы 1 , оно является тренировочным упражнением. Можно обобщить этот факт – суммы сторон описанного чётноугольника, взятых через одну, равны. Например, для шестиугольника ABCDEF верно: AB + CD + EF = BC + DE + FА.

3. МГУ. В четырёхугольнике ABCD расположены две окружности: первая окружность касается сторон AB, BC и AD , а вторая – сторон BC, CD и AD . На сторонах BC и AD взяты точки E и F соответственно так, отрезок EF касается обеих окружностей, а периметр четырёхугольника ABEF на 2p больше периметра четырёхугольника ECDF . Найти AB , если CD = a .

Решение (рис. 1) . Так как четырёхугольники ABEF и ECDF вписанные, то по теореме 2 Р ABEF = 2(AB + EF) и Р ECDF = 2(CD + EF), по условию

Р ABEF – Р ECDF = 2(AB + EF) – 2(CD + EF) = 2p. AB – CD = p. АВ = а + р.

Опорная задача 1. Прямые АВ и АС – касательные в точках В и С к окружности с центром в точке О. Через произвольную точку Х дуги ВС
проведена касательная к окружности, пересекающая отрезки АВ и АС в точках М и Р соответственно. Докажите, что периметр треугольника АМР и величина угла МОР не зависят от выбора точки Х.

Решение (рис. 5). По теореме 1 МВ = МХ и РС = РХ. Поэтому периметр треугольника АМР равен сумме отрезков АВ и АС. Или удвоенной касательной, проведённой к вневписанной окружности для треугольника АМР . Величина угла МОР измеряется половиной величины угла ВОС , который не зависит от выбора точки Х .

Опорная задача 2а. В треугольник со сторонами а, b и c вписана окружность, касающаяся стороны АВ и точке К. Найти длину отрезка АК.

Решение (рис. 6). Способ первый (алгебраический). Пусть АК = АN = x, тогда BK = BM = c – x, CM = CN = a – c + x. АС = АN + NC, тогда можем составить уравнение относительно х: b = x + (a – c + x). Откуда .

Способ второй (геометрический). Обратимся к схеме. Отрезки равных касательных, взятые по одному, в сумме дают полупериметр
треугольника. Красный и зелёный составляют сторону а. Тогда интересующий нас отрезок х = р – а. Безусловно, полученные результаты совпадают.

Опорная задача 2б. Найти длину отрезка касательной АК, если К – точка касания вневписанной окружности со стороной АВ.Решение (рис. 7). АК = АM = x, тогда BK = BN = c – x, CM = CN. Имеем уравнение b + x = a + (c – x). Откуда . З аметим, что из опорной задачи 1 следует, что СМ = р Δ АВС. b + x = p; х = р – b. Полученные формулы имеют применение в следующих задачах.

4. Найдите радиус окружности, вписанной в прямоугольный треугольник с катетами а, b и гипотенузой с. Решение (рис. 8). Т ак как OMCN – квадрат, то радиус вписанной окружности равен отрезку касательной CN. .

5. Докажите, что точки касания вписанной и вневписанной окружности со стороной треугольника симметричны относительно середины этой стороны.

Решение (рис. 9). Заметим, АК – отрезок касательной вневписанной окружности для треугольника АВС. По формуле (2) . ВМ – отрезок касательной вписанной окружности для треугольника АВС. По формуле (1) . АК = ВМ, а это и означает, что точки К и М равноудалены от середины стороны АВ, что и требовалось доказать.

6. К двум окружностям проведены две общие внешние касательные и одна внутренняя. Внутренняя касательная пересекает внешние в точках А, В и касается окружностей в точках А 1 и В 1 . Докажите, что АА 1 = ВВ 1 .

Решение (рис. 10). Стоп… Да что тут решать? Это же просто другая формулировка предыдущей задачи. Очевидно, что одна из окружностей является вписанной, а другая вневписанной для некоего треугольника АВС. А отрезки АА 1 и ВВ 1 соответствуют отрезкам АК и ВМ задачи 5. Примечательно, что задача, предлагавшаяся на Всероссийской олимпиаде школьников по математике, решается столь очевидным образом.

7. Стороны пятиугольника в порядке обхода равны 5, 6, 10, 7, 8. Доказать, что в этот пятиугольник нельзя вписать окружность.

Решение (рис. 11) . Предположим, что в пятиугольник АВСDE можно вписать окружность. Причём стороны AB , BC , CD , DE и ЕA равны соответственно 5, 6, 10, 7 и 8. Отметим последовательно точки касания – F , G , H , M и N . Пусть длина отрезка AF равна х .

Тогда BF = FD AF = 5 – x = BG . GC = BC BG = = 6 – (5 – x ) = 1 + x = CH . И так далее: HD = DM = 9 – x ; ME = EN = x – 2, AN = 10 – х .

Но, AF = AN . То есть 10 – х = х ; х = 5. Однако, отрезок касательной AF не может равняться стороне АВ . Полученное противоречие и доказывает, что в данный пятиугольник нельзя вписать окружность.

8. В шестиугольник вписана окружность, его стороны в порядке обхода равны 1, 2, 3, 4, 5. Найти длину шестой стороны.

Решение. Конечно, можно отрезок касательной обозначить за х , как и в предыдущей задаче, составить уравнение и получить ответ. Но, гораздо эффективнее и эффектнее использовать примечание к теореме 2 : суммы сторон описанного шестиугольника, взятых через одну, равны.

Тогда 1 + 3 + 5 = 2 + 4 + х , где х – неизвестная шестая сторона, х = 3.

9. МГУ, 2003 г . химический факультет, № 6(6) . В пятиугольник АВСDE вписана окружность, Р – точка касания этой окружности со стороной ВС . Найдите длину отрезка ВР , если известно, что длины всех сторон пятиугольника есть целые числа, АВ = 1, СD = 3.

Решение (рис.12) . Так как длины всех сторон являются целыми числами, то равны дробные части длин отрезков BT , BP , DM , DN , AK и AT . Имеем, АТ + ТВ = 1, и дробные части длин отрезков AT и TB равны. Это возможно только тогда, когда АТ + ТВ = 0,5. По теореме 1 ВТ + ВР .
Значит, ВР = 0,5. Заметим, что условие СD = 3 оказалось невостребованным. Очевидно, авторы задачи предполагали какое-то другое решение. Ответ: 0,5.

10. В четырёхугольнике ABCD AD = DC, AB = 3, BC = 5. Окружности, вписанные в треугольники ABD и CBD касаются отрезка BD в точках M и N соответственно. Найти длину отрезка MN.

Решение (рис. 13). MN = DN – DM. По формуле (1) для треугольников DBA и DBС соответственно, имеем:

11. В четырёхугольник ABCD можно вписать окружность. Окружности, вписанные в треугольники ABD и CBD имеют радиусы R и r соответственно. Найти расстояние между центрами этих окружностей.

Решение (рис. 13). Так как по условию четырёхугольник ABCD вписанный, по теореме 2 имеем: AB + DC = AD + BC. Воспользуемся идеей решения предыдущей задачи. . Это означает, что точки касания окружностей с отрезком DM совпадают. Расстояние между центрами окружностей равно сумме радиусов. Ответ: R + r.

Фактически доказано, что условие – в четырёхугольник ABCD можно вписать окружность, равносильно условию – в выпуклом четырехугольнике ABCD окружности, вписанные в треугольники ABC и ADC касаются друг друга. Верно обратное.

Доказать эти два взаимно-обратных утверждения предлагается в следующей задаче, которую можно считать обобщением данной.

12. В выпуклом четырехугольнике ABCD (рис. 14 ) окружности, вписанные в треугольники ABC и ADC касаются друг друга. Докажите, что окружности, вписанные в треугольники ABD и BDC также касаются друг друга.

13. В треугольнике АВС со сторонами а, b и c на стороне ВС отмечена точка D так, что окружности, вписанные в треугольники АВD и ACD касаются отрезка AD в одной точке. Найти длину отрезка BD .

Решение (рис. 15). Применим формулу (1) для треугольников ADC и ADB , вычислив DM двумя

Оказывается, D – точка касания со стороной ВС окружности, вписанной в треугольник АВС . Верно обратное: если вершину треугольника соединить с точкой касания вписанной окружности на противоположной стороне, то окружности, вписанные в получившиеся треугольники, касаются друг друга.

14. Центры О 1 , О 2 и О 3 трёх непересекающихся окружностей одинакового радиуса расположены в вершинах треугольника. Из точек О 1 , О 2 , О 3 проведены касательные к данным окружностям так, как показано на рисунке.

Известно, что эти касательные, пересекаясь, образовали выпуклый шестиугольник, стороны которого через одну покрашены в красный и синий цвета. Докажите, что сумма длин красных отрезков равна сумме длин синих.

Решение (рис. 16). Важно понять, как использовать тот факт, что заданные окружности имеют одинаковые радиусы. Заметим, что отрезки ВR и равны, что следует из равенства прямоугольных треугольников О 1 ВR и O 2 BM . Аналогично DL = DP , FN = FK . Почленно складываем равенства, затем вычитаем из полученных сумм одинаковые отрезки касательных, проведенных из вершин А , С , и Е шестиугольника ABCDEF : АR и AK , CL и CM , EN и EP . Получаем требуемое.

Вот пример задачи по стереометрии, предлагавшейся на XII Международном математическом турнире старшеклассников “Кубок памяти А. Н. Колмогорова”.

16. Дана пятиугольная пирамида SA 1 A 2 A 3 A 4 A 5 . Существует сфера w , которая касается всех ребер пирамиды и другая сфера w 1 , которая касается всех сторон основания A 1 A 2 A 3 A 4 A 5 и продолжений боковых рёбер SA 1 , SA 2 , SA 3 , SA 4 , SA 5 за вершины основания. Докажите, что вершина пирамиды равноудалена от вершин основания. (Берлов С. Л., Карпов Д. В.)

Решение. Пересечение сферы w с плоскостью любой из граней сферы – это вписанная окружность грани. Пересечение сферы w 1 с каждой из граней SA i A i +1 – вневписанная окружность, касающаяся стороны A i A i +1 треугольника SA i A i +1 и продолжений двух других сторон. Обозначим точку касания w 1 с продолжением стороны SA i через B i . По опорной задаче 1 имеем, что SB i = SB i +1 = p SAiAi +1 , следовательно, периметры всех боковых граней пирамиды равны. Обозначим точку касания w со стороной SA i через С i . Тогда SC 1 = SC 2 = SC 3 = SC 4 = SC 5 = s ,
так как отрезки касательных равны. Пусть C i A i = a i . Тогда p SAiAi +1 = s+a i +a i +1 , и из равенства периметров следует, что a 1 = a 3 = a 5 = a 2 = a 4 , откуда SA 1 = SA 2 = SA 3 = SA 4 = SA 5 .

17. ЕГЭ. Диагностическая работа 8.12.2009 г, С–4. Дана трапеция ABCD , основания которой BC = 44, AD = 100, AB = CD = 35. Окружность, касающаяся прямых AD и AC , касается стороны CD в точке K . Найдите длину отрезка CK .ВDС и ВDА , касаются стороны ВD в точках Е и F . Найдите длину отрезка EF .

Решение. Возможны два случая (рис. 20 и рис. 21). По формуле (1) найдём длины отрезков DE и DF .

В первом случае AD = 0,1АС , СD = 0,9AC . Во втором – AD = 0,125АС , СD = 1,125AC . Подставляем данные и получаем ответ: 4,6 или 5,5.

Задачи для самостоятельного решения/

1. Периметр равнобедренной трапеции, описанной около окружности равен 2р. Найдите проекцию диагонали трапеции на большее основание. (1/2р)

2. Открытый банк задач ЕГЭ по математике. В4. К окружности, вписанной в треугольник ABC (рис. 22), проведены три касательные. Периметры отсеченных треугольников равны 6, 8, 10. Найдите периметр данного треугольника. (24)

3. В треугольник АВС вписана окружность. MN – касательная к окружности, MÎ АС, NÎ ВС, ВС = 13, АС = 14, АВ = 15. Найдите периметр треугольника MNC. (12)

4. К окружности, вписанной в квадрат со стороной а, проведена касательная, пересекающая две его стороны. Найдите периметр отсечённого треугольника. (а)

5. Окружность вписана в пятиугольник со сторонами а , d , c , d и e . Найдите отрезки, на которые точка касания делит сторону, равную а .

6. В треугольник со сторонами 6, 10 и 12 вписана окружность. К окружности проведена касательная так, что она пересекает две большие стороны. Найдите периметр отсечённого треугольника. (16)

7. CD – медиана треугольника ABC . Окружности, вписанные в треугольники ACD и BCD , касаются отрезка CD в точках M и N . Найдите MN , если АС ВС = 2. (1)

8. В треугольнике АВС со сторонами а, b и c на стороне ВС отмечена точка D . К окружностям, вписанным в треугольники АВD и ACD , проведена общая касательная, пересекающая AD в точке М . Найти длину отрезка АМ . (Длина АМ не зависит от положения точки D и
равна ½ (c + b – a ))

9. В прямоугольный треугольник вписана окружность радиуса а . Радиус окружности, касающейся гипотенузы и продолжений катетов, равен R. Найдите длину гипотенузы. (R – a )

10. В треугольнике АВС известны длины сторон: АВ = с , АС = b , ВС = а . Вписанная в треугольник окружность касается стороны АВ в точке С 1 . Вневписанная окружность касается продолжения стороны АВ за точку А в точке С 2 . Определите длину отрезка С 1 С 2 . (b )

11. Найдите длины сторон треугольника, разделённых точкой касания вписанной окружности радиуса 3 см на отрезки 4 см и 3 см. (7, 24 и 25 см в прямоугольном треугольнике)

12. Соросовская олимпиада 1996 г, 2 тур, 11 класс . Дан треугольник АВС , на сторонах которого отмечены точки А 1 , В 1 , С 1 . Радиусы окружностей вписанных в треугольники АС 1 В 1 , ВС 1 А 1 , СА 1 В 1 равны по r . Радиус окружности, вписанной в треугольник А 1 В 1 С 1 равен R . Найти радиус окружности, вписанной в треугольник АВС . (R + r ).

Задачи 4–8 взяты из задачника Гордина Р. К. “Геометрия. Планиметрия.” Москва. Издательство МЦНМО. 2004.

Вспомним случаи взаимного расположения прямой и окружности.

Задана окружность с центром О и радиусом r. Прямая Р, расстояние от центра до прямой, то есть перпендикуляр ОМ, равна d.

Случай 1 - расстояние от центра окружности до прямой меньше радиуса окружности:

Мы доказали, что в случае, когда расстояние d меньше радиуса окружности r, прямая и окружность имеют только две общие точки (рис. 1).

Рис. 1. Иллюстрация к случаю 1

Случай второй - расстояние от центра окружности до прямой равно радиусу окружности:

Мы доказали, что в данном случае общая точка единственная (рис. 2).

Рис. 2. Иллюстрация к случаю 2

Случай 3 - расстояние от центра окружности до прямой больше радиуса окружности:

Мы доказали, что в данном случае окружность и прямая не имеют общих точек (рис. 3).

Рис. 3. Иллюстрация к случаю 3

На данном уроке нас интересует второй случай, когда прямая и окружность имеют единственную общую точку.

Определение:

Прямая, имеющая с окружностью единственную общую точку, называется касательной к окружности, общая точка называется точкой касания прямой и окружности.

Прямая р - касательная, точка А - точка касания (рис. 4).

Рис. 4. Касательная

Теорема:

Касательная к окружности перпендикулярна радиусу, проведенному в точку касания (рис. 5).

Рис. 5. Иллюстрация к теореме

Доказательство:

От противного - пусть ОА не перпендикулярно прямой р. В таком случае, опустим из точки О перпендикуляр на прямую р, который будет расстоянием от центра окружности до прямой:

Из прямоугольного треугольника можем сказать, что гипотенуза ОН меньше катета ОА, то есть , прямая и окружность имеют две общие точки, прямая р является секущей. Таким образом, мы получили противоречие, а, значит, теорема доказана.

Рис. 6. Иллюстрация к теореме

Справедлива и обратная теорема.

Теорема:

Если прямая проходит через конец радиуса, лежащий на окружности, и перпендикулярна этому радиусу, то она является касательной.

Доказательство:

Поскольку прямая перпендикулярна радиусу, то расстояние ОА - это расстояние от прямой до центра окружности и оно равно радиусу: . То есть , а в этом случае, как мы ранее доказывали, у прямой и окружности единственная общая точка - это точка А, таким образом, прямая р является касательной к окружности по определению (рис. 7).

Рис. 7. Иллюстрация к теореме

Прямую и обратную теоремы можно объединить следующим образом (рис. 8):

Задана окружность с центром О, прямая р, радиус ОА

Рис. 8. Иллюстрация к теореме

Теорема:

Прямая является касательной к окружности тогда и только тогда, когда радиус, проведенный в точку касания, перпендикулярен ей.

Данная теорема означает, что если прямая является касательной, то радиус, проведенный в точку касания, перпендикулярен ей, и наоборот, из перпендикулярности ОА и р следует, что р - касательная, то есть, прямая и окружность имеют единственную общую точку.

Рассмотрим две касательные, проведенные из одной точки к окружности.

Теорема:

Отрезки касательных к окружности, проведенные из одной точки, равны и составляют равные углы с прямой, проведенной через эту точку и центр окружности.

Задана окружность, центр О, точка А вне окружности. Из точки А проведены две касательные, точки В и С - точки касания. Требуется доказать, что и что равны углы 3 и 4.

Рис. 9. Иллюстрация к теореме

Доказательство:

Доказательство основано на равенстве треугольников . Объясним равенство треугольников. Они являются прямоугольными, так как радиус, проведенный в точку касания, перпендикулярен касательной. Значит, углы и прямые и равны по . Катеты ОВ и ОС равны, так как являются радиусом окружности. Гипотенуза АО - общая.

Таким образом, треугольники равны по равенству катета и гипотенузы. Отсюда очевидно, что катеты АВ и АС также равны. Также углы, лежащие напротив равных сторон, равны, значит, равны углы и , .

Теорема доказана.

Итак, мы познакомились с понятием касательной к окружности, на следующем уроке мы рассмотрим градусную меру дуги окружности.

Список литературы

  1. Александров А.Д. и др. Геометрия 8 класс. - М.: Просвещение, 2006.
  2. Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. Геометрия 8. - М.: Просвещение, 2011.
  3. Мерзляк А.Г., Полонский В.Б., Якир С.М. Геометрия 8 класс. - М.: ВЕНТАНА-ГРАФ, 2009.
  1. Univer.omsk.su ().
  2. Oldskola1.narod.ru ().
  3. School6.aviel.ru ().

Домашнее задание

  1. Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др., Геометрия 7-9, № 634-637, с. 168.

Прямая, имеющая с окружностью только одну общую точку, называется касательной к окружности, а их общая точка называется точкой касания прямой и окружности.

Теорема (свойство касательной к окружности)

Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.

Дано

А – точка касания

Доказать : р ОА

Доказательство.

Докажем методом «от противного».

Предположим, что р ОА, тогда ОА – наклонная к прямой р.

Если из точки О провести перпендикуляр ОН к прямой р, то его длина будет меньше радиуса: ОН< ОА=r

Получим, что расстояние от центра окружности к прямой р (ОН) меньше радиуса (r) , значит прямая р – секущая (т.е. имеет с окружностью две общие точки), что противоречит условию теоремы (р- касательная).

Значит предположение неверно, следовательно прямая р перпендикулярна ОА.

Теорема (Свойство отрезков касательных, проведенных из одной точки)

Отрезки касательных к окружности, проведенные из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.

Дано : окр. (О; r)

АВ и АС – касательные к окр. (О; r)

Доказать : АВ=АС

Доказательство

1) ОВ АВ, ОС АС, как радиусы, проведенные в точку касания (свойство касательной)

2) Рассмотрим тр. АОВ и тр. АОС – п/у

АО – общая

ОВ=ОС (как радиусы)

Значит, АВО = АОС (по гипотенузе и катету). Следовательно,

АВ =АС, <3 = < 4 (как соответственные элементы в равных тр-ках). ч.т.д.

Теорема (Признак касательной)

Если прямая проходит через конец радиуса, лежащий на окружности, и перпендикулярна этому радиусу, то она является касательной.

Дано : ОА – радиус окружности

Доказать : р- касательная к окружности

Доказательство

ОА – радиус окружности (по условию) (ОА=r)

ОА – перпендикуляр из О к прямой р (ОА =d)

Значит, r=ОА=d , значит прямая р и окружность имеют одну общую точку.

Следовательно, прямая р – касательная к окружности. ч.т.д.

3 .Свойство хорд и секущих.

Свойства касательной и секущей

ОПРЕДЕЛЕНИЕ

Окружностью называется геометрическое место точек, равноудаленных от одной точки, которая называется центром окружности.

Отрезок, соединяющий две точки окружности, называется хордой (на рисунке это отрезок). Хорда, проходящая через центр окружности, называется диаметром окружности.

1. Касательная перпендикулярна радиусу, проведенному в точку касания.

2. Отрезки касательных, проведенных из одной точки, равны.

3. Если из точки, лежащей вне окружности, проведены касательная и секущая, то квадрат длины касательной равен произведению секущей на ее внешнюю часть.

Прямая (MN ), имеющая с окружностью только одну общую точку (A ), называется касательной к окружности .

Общая точка называется в этом случае точкой касания.

Возможность существования касательной , и притом проведенной через любую точку окружности , как точку касания, доказывается следующей теоремой .

Пусть требуется провести к окружности с центром O касательную через точку A . Для этого из точки A, как из центра, описываем дугу радиусом AO , а из точки O , как центра, пересекаем эту дугу в точках B и С раствором циркуля, равным диаметру данного круга.

Проведя затем хорды OB и , соединим точку A с точками D и E , в которых эти хорды пересекаются с данной окружностью. Прямые AD и AE - касательные к окружности O . Действительно, из построения видно, что треугольники AOB и AOС равнобедренные (AO = AB =AС ) с основаниями OB и, равными диаметру круга O .

Так как OD и OE - радиусы, то D - середина OB , а E - середина , значит AD и AE - медианы , проведенные к основаниям равнобедренных треугольников, и потому перпендикулярны к этим основаниям. Если же прямые DA и EA перпендикулярны к радиусам OD и OE , то они - касательные .

Следствие.

Две касательные, проведенные из одной точки к окружности, равны и образуют равные углы с прямой, соединяющей эту точку с центром .

Так AD=AE и ∠OAD = ∠OAE потому, что прямоугольные треугольники AOD и AOE , имеющие общую гипотенузу AO и равные катеты OD и OE (как радиусы), равны. Заметим, что здесь под словом “касательная” подразумевается собственно “отрезок касательной ” от данной точки до точки касания.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.



Похожие статьи