Осевые моменты инерции прямоугольного треугольника. Момент инерции квадратного сечения

05-12-2012: Адольф Сталин

Было бы неплохо объяснить на наглядном примере для особо одаренных, типа меня, что такое момент инерции и с чем его едят. На специализированных сайтах как-то всё очень запутанно, а у Дока есть явный талант довести информацию, быть может не самую сложную, но очень грамотно и понятно

05-12-2012: Доктор Лом

В принципе, что такое момент инерции и откуда он взялся, достаточно подробно объяснено в статье "Основы сопромата, расчетные формулы", здесь лишь повторюсь: "W - это момент сопротивления поперечного сечения балки, другими словами, площадь сжимаемой или растягиваемой части сечения балки, умноженная на плечо действия равнодействующей силы". Момент сопротивления необходимо знать для расчетов конструкции на прочность, т.е. по предельным напряжениям. Момент инерции необходимо знать для определения углов поворота поперечного сечения и прогиба (смещения) центра тяжести поперечного сечения, так как максимальные деформации возникают в самом верхнем и в самом нижнем слое изгибаемой конструкции, то определить момент инерции можно, умножив момент сопротивления на расстояние от центра тяжести сечения до верхнего или нижнего слоя, поэтому для прямоугольных сечений I=Wh/2. При определении момента инерции сечений сложных геометрических форм сначала сложная фигура разбивается на простейшие, затем определяются площади сечения этих фигур и моменты инерции простейших фигур, затем площади простейших фигур умножаются на квадрат расстояния от общего центра тяжести сечения до центра тяжести простейшей фигуры. Момент инерции простейшей фигуры в составе сложного сечения равен моменту инерции фигуры + квадрат расстояния умноженный на площадь. Затем полученные моменты инерции суммируются и получается момент инерции сложного сечения. Но это максимально упрощенные формулировки (хотя, соглашусь, все равно выглядит достаточно мудрено). Со временем напишу отдельную статью.

20-04-2013: Petr

Не нужно полностью доверять поданной в сайтах информации. Её никто по-хорошему не проверяет. И ссылки на неё не даются. Так в Таблице 1. "Формы сечения, площади сечений, моменты инерции и моменты сопротивления для конструкций достаточно простых геометрических форм" для тонкостенной трубы дается определение, что отношение диаметра к толщине оболочки должно быть больше 10. По другим источникам - должно быть больше 20!!! (Н.М. Беляев. Сопротивление материалов. М.1996. стр.160. или Н.И.Безухов. Основы теории упругости, пластичности и ползучести.М.1961.стр.390)

21-04-2013: Доктор Лом

Верно. Доверять нельзя. Но логическое мышление пока никто не отменял. Самый правильный вариант - рассчитывать момент инерции или момент сопротивления для любой трубы по формулам, приведенным для обычной трубы (на 1 пункт выше). Формулы, приводимые для тонкостенной трубы, в любом случае будут приближенными и годятся только для первичного расчета и об этом забывать нельзя.
Впрочем параметры максимально допустимой толщины стенки исправил.

25-06-2013: Саня

требуется определить момент инерции для сложного нестандартного сечения. сечение: прямоугольник с двумя пазами. внешне похоже на букву "Ш". не получается найти какую либо информацию. буду признателен за какую нибудь информацию

25-06-2013: Доктор Лом

Посмотрите статью "Расчет прочности потолочного профиля для гипсокартона" (http://сайт/item249.html)
там в частности определяется момент инерции тоже не совсем простого сечения.

04-11-2014: Доктор Лом

Формула из приведенного вами источника неправильная (ею можно пользоваться только для приблизительных вычислений) и проверить это легко.
Чтобы определить момент инерции сечения трубы, достаточно вычесть из момента инерции стержня круглого сечения (тут при вычислениях используется наружный диаметр трубы) момент инерции отверстия (внутренний диаметр, ведь внутри трубы никакого материала нет, на то она и труба). После простейших математических преобразований мы получим формулу момента инерции трубы, приведенную в таблице.
А для того, чтобы определить момент сопротивления, нужно момент инерции разделить на максимальное расстояние от центра тяжести до самой дальней точки сечения, соответственно на D/2, или умножить на 2/D.
В итоге получить указанную вами формулу невозможно и чем толще будет стенка трубы, тем больше будет погрешность при использовании этой формулы.

04-11-2014: Радик

Спасибо, док!

11-11-2014: Ильгам

Не смог найти инфо о том в каких единицах (мм, см, м) все значения в формулах.
Попробовал посчитать Wz для уголка 210х90мм (если у швел.24П срезать верхнюю полку), получилось 667,5 см3, при условии что все значения в см.
Для примера, у швел.24П (до срезания полки) Wx(Wz)=243 см3.

11-11-2014: Доктор Лом

Это общие формулы. В каких единицах подставите значения, в таких и получите результат, только само собой уже в кубических. Но если начали подставлять, например, в сантиметрах, то так и нужно продолжать.
У швеллера без полки момент сопротивления по умолчанию не может быть больше чем у целого швеллера. Для приблизительного определения момента сопротивления швеллера без полки вы можете воспользоваться формулами для неравнополочного уголка (только для определения Wz, для Wy эти формулы не подойдут).

04-01-2015: Valerij

Если сечение трубы ослаблено несколькими значительными отверстиями, как учесть это при расчёте момента инерции и момента сопротивления? Труба 32.39см и в ней 9 отв. диам.2.8см в сечении(шаг отвермтий 10см. по длине трубы).

05-01-2015: Доктор Лом

Для определения момента инерции вам нужно вычесть из момента инерции трубы момент инерции вашего отверстия. Для этого нужно определить площадь сечения отверстия и затем умножить ее на квадрат расстояния до центра трубы плюс собственный момент инерции отверстия. Больше подробностей в статье "Моменты инерции поперечных сечений".
Если расчет не требует особой точности и диаметр отверстия в 5 и более раз меньше диаметра трубы (вроде ваш случай, если 32.39 - это наружный диаметр), то сегмент отверстия можно привести к прямоугольнику. Если отверстие не сквозное, то следует дополнительно определить положение центра тяжести трубы с отверстием для того, чтобы потом вычислить новое значение момента сопротивления.
Но и это еще не все. Вам следует учесть, что возле отверстий возникают значительные локальные напряжения.

09-10-2015: Борис

Неравноплечий уголок.При вычислении Wy не y,а H-y

09-10-2015: Доктор Лом

Не пойму, о чем вы. Определение момента сопротивления относительно оси у в таблицах вообще не приводится.

09-10-2015: Борс

Для треугольников при вычислении Wzп h в квадрате.

09-10-2015: Борис

09-10-2015: Доктор Лом

Все верно. Теперь понял, о чем вы. Более корректно было бы указать момент сопротивления для верхней и для нижней части сечения, а я указал только для нижней. Ну а при определении момента сопротивления треугольников банально пропущен квадрат.
Исправил. Спасибо за внимательность.

28-04-2016: Jama

Здравствуете! Кто может помочь о правильности расчета http://ej.kubagro.ru/2011/02/pdf/19.pdf
я не могу понят откуда значение берется момент сопротивления. Помогите пожалуйста! 21-03-2017: игорь

здравствуйте,Сергей. я прочитал некоторые ваши статьи,очень интересно и понятно(в основном).я хотел бы рассчитать балку двутаврового сечения,но не могу найти Ix и Wx. дело в том что она не стандартная,я её буду делать сам,из дерева.можете ли вы мне помочь? я оплачу.только я не смогу оплатить электронными средствами т.к. не знаю как этим пользоваться.

21-03-2017: Доктор Лом

Игорь, я отправил вам письмо.

30-08-2017: Али

Уважаемый доктор, желаю вам всего найлучшего. Помогите пожалуйста, какими формулами нужны для подбора и проверки на прочность балку следующих сечений,:Швеллер,уголок и бульбовый профиль, имея допускаемый момент сопротивления W=58,58cm3. спасибо большое и жду вашу помощь.

31-08-2017: Доктор Лом

Посмотрите статью "Расчет стальных однопролетных балок с шарнирными опорами при изгибе согласно СП 16.13330.2011", там все достаточно подробно расписано.

13-11-2017: Абдуахад

Здравствуйте пожалуйста подскажите почему Ql^2/8 почему деленная на 8 и почему иногда делим на 6 и 24 итд подскажите пожалуйста только это не понял

Статикой называется раздел теоретической механики, в котором излагается общее учение о силах и изучаются условия равновесия тел, находящихся под действием сил.

В основе статики лежат некоторые основные положения (аксиомы ), которые являются обобщением многовекового производственного опыта человечества и теоретических исследований.

Аксиома 1. Если на свободное абсолютно твёрдое тело действуют две силы, то тело может находиться в равновесии тогда и только тогда, когда эти силы равны по величине и направлены вдоль одной прямой в противоположные стороны (рис.1.2).

Рис.1.2

Аксиома 2. Действие данной системы сил на абсолютно твёрдое тело не изменится, если к ней прибавить или от неё отнять уравновешенную систему сил. Если , то . Следствие : действие силы на абсолютно твёрдое тело не изменится, если перенести точку приложения силы вдоль её линии действия в любую другую точку тела. Пусть на тело действует приложенная в точке А сила . Выберем на линии действия этой силы произвольную точку В , и приложим к ней уравновешенные силы и , причём , . Так как силы и образуют уравновешенную систему сил, то согласно второй аксиоме статики их можно отбросить. В результате на тело будет действовать только одна сила , равная , но приложенная в точке В (рис.1.3).

Рис.1.3

Аксиома 3. Две силы, приложенные к твёрдому телу в одной точке, имеют равнодействующую, приложенную в той же точке и изображаемую диагональю параллелограмма, построенного на этих силах как на сторонах. Вектор , равный диагонали параллелограмма, построенного на векторах и , называется геометрической суммой векторов и (рис.1.4).

Аксиома 4. Закон равенства действия и противодействия. При всяком действии одного тела на другое имеет место такое же по величине, но противоположное по направлению противодействие (рис.1.5).

Рис.1.5

Аксиома 5. Принцип отвердевания. Равновесие изменяемого (деформируемого) тела, находящегося под действи-ем данной системы сил, не нарушится, если тело считать отвердевшим, т.е. абсолютно твёрдым.

4.Геометрические характеристики фигур. Статический момент. Центробежный момент инерции, полярный момент инерции (основные понятия).

Результат расчетов зависит не только от площади сечения, поэтому при решении задач по сопромату не обойтись без определения геометрических характеристик фигур : статических, осевых, полярного и центробежного моментов инерции. Обязательно необходимо уметь определять положение центра тяжести сечения (от положения центра тяжести зависят перечисленные геометрические характеристики). К дополнению к геометрическим характеристикам простых фигур: прямоугольника, квадрата, равнобедренного и прямоугольного треугольников, круга, полукруга . Указаны центр тяжести и положение главных центральных осей, и определены относительно них геометрические характеристики при условии, что материал балки однородный.

Геометрические характеристики прямоугольника и квадрата

Осевые моменты инерции прямоугольника (квадрата)

ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКА

Осевые моменты инерции прямоугольного треугольника

ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ РАВНОБЕДРЕННОГО ТРЕУГОЛЬНИКА

Осевые моменты инерции равнобедренного треугольника

ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ КРУГА

Осевые моменты инерции круга

ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПОЛУКРУГА

Осевые моменты инерции полукруга

Статический момент

Рассмотрим поперечное сечение стержня площадью F. Проведем через произвольную точку О оси координат x и y. Выделим элемент площади с координатами x и y (рис. 4.1).

Введем понятие статического момента инерции относительно оси - величину, равную произведению элемента площади () на расстояние (обозначено буквой y) до оси x:

Аналогично статический момент инерции относительно оси y равен:

Просуммировав такие произведения по площади F, получим статический момент инерции всей фигуры относительно осей x и y:

.

Статический момент инерции фигуры относительно оси измеряется в единицах длины в кубе (см3), и может быть положительным, отрицательным и равным нулю.

Пусть –координаты центра тяжести фигуры. Продолжая аналогию с моментом силы, можно записать следующие выражения:

Таким образом, моментом (статическим моментом) площади фигуры относительно оси называется произведение площади на расстояние от ее центра тяжести до оси.

Центробежными моментами инерции тела по отношению к осям прямоугольной декартовой системыкоординат называются следующие величины:

где x , y и z - координаты малого элемента тела объёмом dV , плотностью ρ и массой dm .

Ось OX называется главной осью инерции тела , если центробежные моменты инерции J xy и J xz одновременно равны нулю. Через каждую точку тела можно провести три главные оси инерции. Эти осивзаимно перпендикулярны друг другу. Моменты инерции тела относительно трёх главных осей инерции,проведённых в произвольной точке O тела, называются главными моментами инерции тела .

Главные оси инерции, проходящие через центр масс тела, называются главными центральными осямиинерции тела , а моменты инерции относительно этих осей - его главными центральными моментамиинерции . Ось симметрии однородного тела всегда является одной из его главных центральных осейинерции.

Поля́рный моме́нт ине́рции - интегральная сумма произведений площадей элементарных площадок dA на квадрат расстояния их от полюса - ρ 2 (в полярной системе координат), взятая по всей площади сечения. То есть:

Эта величина используется для прогнозирования способности объекта оказывать сопротивлениекручению. Она имеет размерность единиц длины в четвёртой степени (м 4 , см 4 ) и может быть лишь положительной.

Для площади сечения, имеющей форму круга радиусом r полярный момент инерции равен:

Если совместить начало декартовой прямоугольной системы координат 0 с полюсом полярной системы (см. рис.), то

потому что .

Моменты инерции сечения балки (бруса, стержня) относятся, как и площадь сечения, к одним из основных геометрических характеристик элемента, участвующих в расчетах на прочность. Напомню, что балкой в сопромате называется элемент, у которого один из размеров — длина...

Существенно больше двух других – ширины и высоты. Именно два последних габаритных размера плюс форма и влияют наряду со свойствами материала на прочностные характеристики балки.

Геометрические моменты инерции сечения нельзя путать с моментами инерции тел, хотя их смысл весьма схож. Момент инерции тела вокруг некоторой оси – это сумма произведений масс элементарных «объемных» точек тела на квадраты расстояний от оси до этих точек. Момент инерции сечения (плоской фигуры) — это сумма произведений площадей элементарных «плоских» точек этого сечения на квадраты расстояний от них до рассматриваемой оси.

Формулы для вычисления осевых моментов инерции, а также радиусов инерции и моментов сопротивления почти тридцати элементарных фигур, из которых можно составить любое сечение бруса, можно взять в разделе «Элементы сопротивления материалов» главы №1 «Общетехнические сведения» тома №1 «Справочника конструктора-машиностроителя» В.И. Анурьева. Этот трехтомный справочник, являющийся главной настольной книгой нескольких поколений инженеров-механиков и претерпевший около десяти переизданий, и сегодня продолжает являться востребованным и актуальным. Я думаю, он должен обязательно быть у каждого инженера, тем более что найти его в Сети – не проблема. Конечно, интересующие нас формулы можно найти и в другой справочной литературе.

Для двутавров, швеллеров, уголков, труб и прочих прокатных и гнутых профилей, широко применяемых в машиностроении и строительстве, геометрические характеристики сечений, включая моменты инерции, можно найти в таблицах ГОСТов, ОСТов и прочих нормативных документов, которые регламентируют их изготовление.

Балки и стержни, составленные из двух или более элементарных профилей, применяют для повышения прочности и жесткости элементов при отсутствии адекватной с точки зрения массы и габаритов замены одиночным профилем. На практике – это спаренные уголки, двухветвевые колонны, балки с усиленным листовой полосой поясом и другие случаи.

Геометрические характеристики составного сечения. Расчет в Excel.

В статье мы рассматривали в качестве примера составную фигуру, состоящую из треугольника и прямоугольника с вырезом в виде полукруга. Продолжим работу с этим примером. Хотя балку, имеющую столь причудливое сечение, на практике нигде и никогда, наверное, не встретишь, для не очень сложного и наглядного примера она нам подойдет!

Запускаем программу MS Excel или программу OOo Calc, и начинаем работу!

С общими правилами форматирования электронных таблиц, применяемыми в статьях блога, можно ознакомиться .

Из вышеупомянутой статьи мы уже знаем координаты центров тяжести, площади элементов сечения и площадь всего составного сечения. В этой статье продолжим начатую работу, и выполним расчет других геометрических характеристик.

Исходные данные:

Пункты 1 , 2 , 3 копируем из файла и заполняем диапазон ячеек D3:F6.

4. Рассчитаем осевые и центробежные моменты инерции элементов относительно собственных центральных осей Ixi , Iyi , Ixiyi в см4, воспользовавшись формулами из «Справочника конструктора-машиностроителя» В.И. Анурьева

в ячейке D7: =80*40^3/12/10000 =42,667

Ix 1 = a 1 *(b 1 ^3)/12

в ячейке D8: =40*80^3/12/10000 =170,667

Iy1 = b1 *(a1 ^3)/12

в ячейке D9: =0 =0,000

Ix 1 y 1 = 0 (элемент с осевой симметрией)

в ячейке E7: =24*42^3/36/10000 =4,939

Ix 2 = a 2 *(h 2 ^3)/36

в ячейке E8: =42*24^3/48/10000 =1,210

Iy 2 = h 2 *(a 2 ^3)/48

в ячейке E9: =0 =0,000

Ix 2 y 2 = 0 (элемент с осевой симметрией)

в ячейке F7: =- (ПИ()/8*26^4-8/9/ПИ()*26^4)/10000 =-5,016

Ix 3 =- (π /8)*(r 3 ^4) — (8/(9* π ))*(r 3 ^4)

в ячейке F8: =-ПИ()/8*26^4/10000 =-17,945

Iy 3 =- (π /8)*(r 3 ^4)

в ячейке F9: =0 =0,000

Ix 3 y 3 = 0 (элемент с осевой симметрией)

Осевые моменты инерции третьего элемента – полукруга – отрицательны потому, что это вырез в прямоугольнике – пустое место!

Расчет геометрических характеристик:

Пункты 5 , 6 , 7 копируем из файла и заполняем объединенные ячейки D11E11F11…D15E15F15.

8. Рассчитаем осевые и центробежный моменты инерции сечения относительно центральных осей x0 и y0, проведенных через центр тяжести Ix 0 , Iy 0 , Ix 0 y 0 в см4

в объединенной ячейке D16E16F16: =((D5-D15)^2*D6+(E5-D15)^2*E6+(F5-D15)^2*F6)/10000+D7+E7+F7 =90,122

Ix 0 = Σ ((yci Yc )^2* Fi )+ ΣIxi

в объединенной ячейке D17E17F17: =((D4-D14)^2*D6+(E4-D14)^2*E6+(F4-D14)^2*F6)/10000+D8+E8+F8 =159,678

Iy 0 = Σ ((xci Xc )^2* Fi )+ ΣIyi

в объединенной ячейке D18E18F18: =((D5-D15)*(D4-D14)*D6+(E5-D15)*(E4-D14)*E6+(F5-D15)*(F4-D14)*F6)/10000+D9+E9+F9 =-50,372

Ix0y0 = Σ ((yci -Yc )*(xci -Xc )*Fi )+ Σ Ixiyi

9. Вычислим главные центральные моменты инерции сечения Iv и Iu в cм4

в объединенной ячейке D19E19F19: =($D$16+$D$17)/2+((($D$16-$D$17)/2)^2+$D$18^2)^0,5 =186,111

Iv =(Ix0 +Iy0 )/2+(((Ix0 -Iy0 )/2)^2+Ix0y0 ^2)^0,5

в объединенной ячейке D20E20F20: =($D$16+$D$17)/2- ((($D$16-$D$17)/2)^2+$D$18^2)^0,5 =63,689

Iu =(Ix0 +Iy0 )/2- (((Ix0 -Iy0 )/2)^2+Ix0y0 ^2)^0,5

10. Найдем угол наклона главной оси v к центральной оси x0 α в градусах

в объединенной ячейке D21E21F21: =ATAN (D18/(D20-D16))/ПИ()*180 =62,311

α =arctg (Ix0y0 /(Iu -Ix0 ))

11. И в заключении вычислим радиусы инерции составного сечения iv и iu в мм

в объединенной ячейке D22E22F22: =(D19*10000/D11)^0,5 =26,540

iv =(Iv / F 0 )^0,5

в объединенной ячейке D23E23F23: =(D20*10000/D11)^0,5 =15,526

iu =(Iu / F 0 )^0,5

Задача выполнена – вычислены моменты инерции и радиусы инерции составного сечения из трех простых элементов! Получены все необходимые данные для построения эллипса инерции.

Файл Excel с расчетной программой позволяет легко выполнить полный расчет геометрических характеристик поперечного сечения балки, состоящего из двух или трех простых элементов. При необходимости несложно расширить возможности расчетного модуля до большего количества элементов.

Для получения информации о новых статьях и для скачивания рабочих файлов программ прошу Вас подписаться на анонсы в окне, расположенном в конце каждой статьи или в окне вверху страницы.

Не забывайте подтвердить подписку кликом по ссылке в письме, которое тут же придет к вам на указанную почту (может прийти в папку « Спам» )!!!

С интересом прочту ваши комментарии, уважаемые читатели!!! Поделитесь своими мыслями!

Прошу уважающих труд автора скачивать файл с программой расчета после подписки на анонсы статей!

ОПРЕДЕЛЕНИЕ

Осевым (или экваториальным) моментом инерции сечения относительно оси называется величина, которую определяют как:

Выражение (1) обозначает, для вычисления осевого момента инерции берется по всей площади S сумма произведений бесконечно малых площадок () умноженных на квадраты расстояний от них до оси вращения:

Сумма осевых моментов инерции сечения относительно взаимно перпендикулярных осей (например, относительно осей X и Y в декартовой системе координат) дают полярный момент инерции () относительно точки пересечения этих осей:

ОПРЕДЕЛЕНИЕ

Полярным моментом инерции называют момент инерции сечением по отношению к некоторой точке.

Осевые моменты инерции всегда больше нуля, так как в их определениях (1) под знаком интеграла стоят величина площади элементарной площадки (), всегда положительная и квадрат расстояния от этой площадки до оси.

Если мы имеем дело с сечением сложной формы, то часто при расчетах используют то, что осевой момент инерции сложного сечения по отношению к оси равен сумме осевых моментов инерции частей этого сечения относительно той же оси. Однако следует помнить, что нельзя суммировать моменты инерции, которые найдены относительно разных осей и точек.

Осевой момент инерции относительно оси проходящей через центр тяжести сечения имеет наименьшее значение из всех моментов относительно параллельных с ней осей. Момент инерции относительно любой оси () при условии ее параллельности с осью, проходящей через центр тяжести равен:

где - момент инерции сечения относительно оси проходящей через центр тяжести сечения; - площадь сечения; - расстояние между осями.

Примеры решения задач

ПРИМЕР 1

Задание Чему равен осевой момент инерции равнобедренного треугольного сечения относительно оси Z, проходящей через центр тяжести () треугольника, параллельно его основанию? Высота треугольника равна .

Решение Выделим на треугольном сечении прямоугольную элементарную площадку (см. рис.1). Она находится на расстоянии от оси вращения, длина одной ее стороны , другая сторона . Из рис.1 следует, что:

Площадь выделенного прямоугольника с учетом (1.1) равна:

Для нахождения осевого момента инерции используем его определение в виде:

Ответ

ПРИМЕР 2

Задание Найдите осевые моменты инерции относительно перпендикулярных осей X и Y (рис.2) сечения в виде круга диаметр которого равен d.

Решение Для решения задачи удобнее начать с нахождения полярного момента относительно центра сечения (). Все сечение разобьем на бесконечно тонкие кольца толщиной , радиус которых обозначим . Тогда элементарную площадь найдем как:

1.Осевые моменты инерции относительно взаимно перпендикулярных осей x0y (совпадающих со сторонами треугольника) (рис.2.17).

Для определения момента инерции относительно оси х выделим элементарную площадку в виде полоски бесконечно малой ширины , параллельной оси х , на расстоянии у от нее. Площадь площадки . Длину полоски b(y) определим из подобия треугольников с основаниями b(y) и b , откуда . Тогда . Подставляя это

соотношение в выражение для I x (2.21) и устанавливая пределы интегрирования «0-h », получим

.

Аналогично определяется I y .

2. Центробежный момент инерции относительно осей x0y (совпадающих со сторонами треугольника)

Центробежный момент инерции, согласно определению, равен

Используем ту же элементарную площадку, что и ранее (см. рис.2.17). В качестве координаты х примем координату центра тяжести элементарной площадки

.

Подставляем это выражение, а также формулу для dA под интеграл и интегрируем в пределах от 0 до h

Таким образом, формулы для моментов инерции сечения, в виде прямоугольного треугольника, относительно осей, совпадающих с катетами, имеют вид

Заметим, что для рассматриваемого сечения больший интерес представляют моменты инерции относительно центральных осей (ЦО), параллельных катетам треугольника.

3. Моменты инерции относительно взаимно перпендикулярных ЦО x с сy с (параллельных сторонам треугольника)

Формулы для моментов инерции прямоугольного треугольника относительно осей x с сy с (см. рис.2.17) легко получить, используя выражения (2.24), а также теорему о параллельном переносе осей, согласно которой:

осевые моменты инерции ; ;

центробежный момент инерции .

Здесь: а , е – координаты центра тяжести сечения в системе координат x0y

Подставляя эти выражения, а также соотношения (2.24) в приведенные выше формулы, получим

(2.25)

Отметим, что ориентация сечения относительно осей оказывает влияние на знак центробежного момента инерции. Для рассматриваемой ориентации оказалось, что <0. Действительно, на рис.2.17 видно, что большая часть сечения лежит в области с отрицательным произведением координат х ´у (вторая и четвертая координатные четверти). Это и обусловливает отрицательный знак полученного центробежного момента инерции. Ниже приведены схемы с различной ориентацией прямоугольного треугольника относительно ЦО, параллельных сторонам, для которых указан знак .



Похожие статьи