Приведение системы сил на плоскости к простейшему виду. Теорема о параллельном переносе силы

Плоская система сил тоже приводится к силе, равной и приложенной в произвольно выбранном центре О, и паре с моментом

при этом вектор можно определить или геометрически построением силового многоугольника (см. п. 4), или аналитически. Таким образом, для плоской системы сил

R x =F kx , R y =F ky ,

где все моменты в последнем равенстве алгебраические и сумма тоже алгебраическая.

Найдем, к какому простейшему виду может приводиться данная плоская система сил, не находящаяся в равновесии. Результат зависит от значений R и М O .

  • 1. Если для данной системы сил R=0, a M O ?0, то она приводится к одной паре с моментом М O , значение которого не зависит от выбора центра О.
  • 2. Если для данной системы сил R?0, то она приводится к одной силе, т. е. к равнодействующей. При этом возможны два случая:
    • а) R?0, М O =0. В этом случае система, что сразу видно, приводится к равнодействующей R, проходящей через центр О;
    • б) R?0, М O ?0. В этом случае пару с моментом М O можно изобразить двумя силами R" и R", беря R"=R, a R"= - R. При этом, если d=OC - плечо пары, то должно быть Rd=|M O |.

Отбросив теперь силы R и R", как уравновешенные, найдем, что вся система сил заменяется равнодействующей R"=R, проходящей через точку С. Положение точки С определяется двумя условиями: 1) расстояние OC=d () должно удовлетворять равенству Rd=|M O |; 2) знак момента относительно центра О силы R", приложенной в точке С, т. е. знак m O (R") должен совпадать со знаком М O .

Приведение системы сил к центру

Вопросы

Лекция 6

3. Условия равновесия произвольной системы сил

1. Рассмотрим произвольную систему сил . Выберем произвольную точку О за центр приведения и, воспользовавшись теоремой о параллельном переносе силы, перенесем все силы системы в данную точку, не забывая при переносе каждой силы добавлять присоединенную пару сил.

Полученную таким образом систему сходящихся сил заменим одной силой , равной главному вектору исходной системы сил. Образовавшуюся при переносе систему пар сил заменим одной парой с моментом , равным геометрической сумме моментов всех пар сил (т.е. геометрической суммой моментов исходной системы сил относительно центра О ).

Такой момент называется главным моментом системы сил относительно центра О (рис. 1.30).

Рис. 1.30. Приведение системы сил к центру

Итак, любую систему сил всегда можно заменить всего двумя силовыми факторами - главным вектором и главным моментом относительно произвольно выбранного центра приведения . Очевидно, что главный вектор системы сил не зависит от выбора центра приведения (говорят, что главный вектор инвариантен по отношению к выбору центра приведения). Очевидно также, что главный момент таким свойством не обладает, поэтому необходимо всегда указывать, относительно какого центра определяется главный момент.

2. Приведение системы сил к простейшему виду

Возможность дальнейшего упрощения произвольных систем сил зависит от значения их главного вектора и главного момента, а также от удачного выбор центра приведения. При этом возможны следующие случаи:

a) , . В данном случае система приводится к паре сил с моментом , значение которого не зависит от выбора центра приведения.

б) , . Система приводится к равнодействующей, равной , линия действия которой проходит через центр О .

в) , и взаимно перпендикулярны. Система приводится к равнодействующей, равной , но не проходящей через центр О (рис. 1.31).

Рис. 1.31. Приведение системы сил к равнодействующей

Заменим главный момент парой сил , как показано на рис. 1.31. Определим R из условия, что M 0 = R h . Затем отбросим на основании второй аксиомы статики уравновешенную систему двух сил , приложенных в точке О .

г) и параллельны. Система приводится к динамическому винту, с осью, проходящей через центр О (рис. 1.32).

Рис. 1.32. Динамический винт

д) и не равны нулю и при этом главный вектор и главный момент не параллельны и не перпендикулярны друг другу. Система приводится к динамическому винту, но ось не проходит через центр О (рис. 1.33).


Рис. 1.33. Самый общий случай приведения системы сил

Как выше было доказано, произвольная система сил, как угодно расположенных в пространстве, может быть приведена к одной силе, равной главному вектору системы и приложенной в произвольном центре приведенияО , и одной паре с моментом , равным глав­ному моменту системы относительно того же центра. По

этому в дальнейшем произвольную систему сил можно заменять эквива­лентной ей совокупностью двух векторов - силы и момента, приложенных в точкеО . При изменении положения центра приведения О главный вектор будет сохранять величину и напра­вление, а главный моментбудет изменяться. Докажем, что если главный вектор и главный момент отличны от нуля и взаимно перпендикулярны, то система сил приводится к одной силе, которую в этом случае будем называть равнодействующей (рис.8). Главный моментможно представить парой сил ( ,) с плечом , тогда силыи главный век торобразуют систему двух сил эквивалентную нулю, которую можно отбросить. Останется одна сила, действующая вдоль прямой, параллельной главному вектору и проходящей на расстоянииh =от плоскости, образуемой векторамии. Рассмотренный случай показывает, что если с самого начала выбрать центр приведения на прямой L, то систему сил сразу бы привели к равнодействующей, главный момент был бы равен нулю. Теперь докажем, что если главный вектор отличен от нуля и не перпендикулярен к главному моменту, то за центр приведения может быть выбрана такая точка О *, что главный момент относительно этой точки и главный вектор расположатся на одной прямой. Для доказательства разложим момент на две составляю­щие- одну, направленную вдоль главного вектора, и другую- перпендикулярную к главному вектору. Тем самым пара силраскладывается на две пары с моментами:и, причем плоскость первой пары перпендикулярна к, тогда плоскость второй пары, перпендикулярная к вектору(рис 9) содержит вектор. Совокупность пары с моментоми силыобразует систему сил, которая может быть сведена к одной силе (рис.8) , проходящей через точку О* . Таким образом (рис 9), совокупность главного вектораи главного моментав точкеО сведена к силе , проходящей через точкуО* , и паре с моментом параллельным этой прямой , что и требовалось доказать. Совокупность силы и пары, плоскость которой перпендикулярна к линии действия силы, называется динамой (рис.10). Пару сил можно представить двумя равными по величине силами (,), расположенными как показано на рис 10. Но, сложив две силыи, получим их суммуи оставшуюся силу, откуда следует (рис.10), что совокупность главного вектораи главного моментав точкеО , может быть сведена к двум непересекающимся силам и.

Рассмотрим некоторые случаи приведения системы сил.

1. Плоская система сил. Пусть для определённости все силы находятся в плоскости OXY . Тогда в самом общем случае

Главный вектор не равен нулю, главный момент не равен нулю, их скалярное произведение равно нулю, действительно

следовательно, главный вектор перпендикулярен главному моменту: плоская система сил приводится к равнодействующей.

2. Система параллельных сил. Пусть для определённости все силы параллельны оси OZ . Тогда в самом общем случае

Здесь также главный вектор не равен нулю, главный момент не равен нулю, а их скалярное произведение равно нулю, действительно

следовательно, главный вектор перпендикулярен главному моменту: система параллельных сил приводится к равнодействующей. В частном случае, если равна нулю, то и главный вектор сил равен нулю, и система сил приводится к паре сил, вектор момента которой находится в плоскостиOXY . Систематизируем теперь рассмотренные случаи. Напомним: произвольная пространственная система сил, приложенная к твердому телу, статически эквивалентна силе, равной главному вектору, приложенной в произвольной точке тела (центре приведения), и паре сил с моментом, равным главному моменту системы сил относительно указанного центра приведения.

1) Пусть =0,≠0. Это случай, когда система сил приводится к одной силе, которую будем называть равнодействующей системы сил. Примером такой системы сил можно считать сходящуюся систему сил, для которой линии действия всех сил пересекаются в одной точке.

2) ≠0,=0 . Система сил эквивалентна паре сил.

3) ≠0,≠0, но. Главный вектор не равен нулю, главный момент не равен нулю, их скалярное произведение равно нулю, т.е. главный вектор и главный момент ортогональны. Любая система векторов, у которой главный вектор и главный мо­мент не равны нулю и они перпендикулярны, эквивалентна равно­действующей, линия действия которой проходит через точкуО* (рис 8). Примером такой системы сил можно считать плос­кую систему сил или систему параллельных сил.

4) ≠0,≠0, и главный вектор и главный момент неортогональны. В этом случае система сил приводится к динаме или к двум непересекающимся силам.

Основная теорема статики. Произвольную систему сил, действующую на твердое тело, можно заменить эквивалентной системой, состоящей из силы и пары сил. Сила равна главному вектору системы сил и приложена в произвольно выбранной точке тела (центре приведения), момент пары равен главному моменту системы сил относительно этой точки.

Главный вектор системы сил :

.

Главный момент системы сил относительно центра O :

определяется своими проекциями на оси координат:

, , ,

.

Возможны следующие случаи приведения системы сил к центру:

Система сил приводится к равнодействующей. Линия действия равнодействующей проходит через центр приведения.

Система сил приводится к паре сил.

3. , , − система сил имеет равнодействующую, которая не проходит через центр приведения. Ее линия действия определяется уравнениями

4. , , − система сил приводится к динамическому винту (силе и паре, лежащей в плоскости, перпендикулярной силе).

Момент пары сил динамического винта

.

Ось динамического винта определяется уравнениями

5. , − уравновешенная система сил.

Пример 1.4.1 . Привести систему сил (рис. 1.4.1) к простейшему виду, если F 1 = 5 Н, F 2 = 15 Н, F 3 = 10 Н, F 4 = 3 Н, a = 2 м.

1. За центр приведения выберем начало координат – точку O (рис. 1.4.2) и укажем углы a и b, определяющие положение силы .

2. Найдем проекции главного вектора на оси координат:

,

,

.

Н.

3. Вычислим проекции главного момента относительно точки О на оси координат:

,

,

,

Н·м, Н·м, Н·м,

4. Найдем величину скалярного произведения главного вектора и главного момента

Так как , то система сил приводится к правому динамическому винту. Вектор момента пары динамического винта и главный вектор совпадают по направлению.

5. Уравнения оси динамического винта имеет вид:

или с учетом найденных значений:

Для построения оси динамического винта найдем точки A и B ее пересечения с координатными плоскостями Oxy и Oyz, соответственно



–0,203 м 1,063 м

6. Определим момент пары сил динамического винта

Н·м.

7. По координатам точек A и B изобразим ось динамического винта (рис. 1.4.3). В произвольной точке этой оси укажем силу, равную главному вектору и вектор момента пары .

Задача 1.4.1 . Имеет ли равнодействующую система сил, для которой главный вектор и главный момент относительно центра О .

Ответ: да.

Задача 1.4.2 . Имеет ли равнодействующую система сил, для которой главный вектор и главный момент относительно центра О .

Ответ: нет.

Задача 1.4.3 . Определить расстояние от центра приведения О долинии действия равнодействующей системы сил (рис. 1.4.4), если ее главный вектор R = 15 Н и главный момент М О = 30 Н·м.

Ответ: 2 м.

Задача 1.4.4 . Определить угол между главным вектором и главным моментом изображенной на рисунке 1.4.5 системы сил, принимая за центр приведения точку O , если F 1 = F 2 = 2 Н, момент пары сил M 1 = 3 Н·м, = 1,5 м.

Ответ: α = 0º.

Задача 1.4.5 . Определить угол между главным вектором и главным моментом изображенной на рисунке 1.4.6 системы сил, принимая за центр приведения точку О , если F 1 = F 2 = F 3 = 10 Н, a = 3 м.

Ответ: α = 135º.

Задача 1.4.6 . Найти главный вектор и главный момент системы сил, изображенной на рисунке 1.4.7, если F 1 = F 2 = F 3 = 7 Н, а ОА = ОВ = ОС = 2 м. За центр приведения принять точку О .

Ответ: R = 0, М О = 17,146 Н·м.

Рис. 1.4.6 Рис. 1.4.7

Задача 1.4.7 . Привести систему сил, приложенных к вершинам параллелепипеда (рис. 1.4.8), к простейшему виду, если F 1 = 16 Н, F 2 = 12 Н, F 3 = 20 Н, a = с = 2,4 м, b =1,8 м.

М = 48 Н·м.

Задача 1.4.8 . Привести систему сил, приложенных к вершинам куба (рис. 1.4.9), к простейшему виду, если F 1 = 15 Н, F 2 = 40 Н, F 3 = 25 Н,
F 4 = F 5 = 20 Н, a = 1,5 м.

Ответ: система сил приводится к паре сил с моментом М = 63,65 Н·м.

Задача 1.4.9 . Привести систему сил, приложенных к правильной четырехугольной пирамиде, как показано на рис. 1.4.10, к простейшему виду, если F 1 = F 2 = F 3 = F 4 = 1 Н, F 5 = 2,83 Н, АВ = AS = 2 м.

Ответ: система сил уравновешена.

Рис. 1.4.8 Рис. 1.4.9
Рис. 1.4.10 Рис. 1.4.11

Задача 1.4.10. Привести систему сил, приложенных к вершинам прямоугольного параллелепипеда (рис. 1.4.11), к простейшему виду, если F 1 = F 5 = 10 Н, F 3 = 40 Н, F 4 = 15 Н, F 2 = 9 Н, a = 2,4 м, b = 3,2 м, c = 1 м.

Ответ: система сил приводится к равнодействующей R = 32 Н, линия действия которой параллельна оси Oy и проходит через точку А (0,9; 0; 0).

Задача 1.4.11. Привести систему сил, приложенных к вершинам прямоугольного параллелепипеда (рис. 1.4.12), к простейшему виду, если F 1 = F 3 = 3 Н, F 2 = F 6 = 6 Н, F 4 = F 5 = 9 Н, a = 3 м, b = 2 м, c = 1 м.

Ответ: система сил уравновешена.

Задача 1.4.12. Привести систему сил, приложенных к вершинам прямоугольного параллелепипеда (рис. 1.4.13), к простейшему виду, если F 1 = F 4 = F 5 = 50 Н, F 2 = 120 Н, F 3 = 30 Н, a = 4 м, b = 3 м, c = 5 м.

R = 80 Н, линия действия которой параллельна оси Oy и проходит через точку А (0,0,10).

Задача 1.4.13. Привести систему сил, приложенных к вершинам куба (рис. 1.4.14), к простейшему виду, если a = 1 м, F 1 = 866 Н, F 2 = F 3 = F 4 = F 5 = 500 Н. При решении принять .

Ответ: система приводится к равнодействующей R = 7,07 Н.

Рис. 1.4.12 Рис. 1.4.13
Рис. 1.4.14 Рис. 1.4.15

Задача 1.4.14. Привести систему сил, приложенных к правильной треугольной пирамиде (рис. 1.4.15), к простейшему виду, если F 1 = F 2 = F 3 = F 4 = F 5 = F 6 = 1 Н, АВ = AS = 2 м.

Ответ: система сил приводится к динамическому винту с R = 1,41 Н и М = 1,73 Н·м, ось силового винта проходит через вершину S перпендикулярно основанию пирамиды.

Задача 1.4.15. Вес радиомачты с основанием G = 140 кН. К мачте приложены сила натяжения антенны F = 20 кН и равнодействующая сил давления ветра P = 50 кН; обе силы горизонтальны и расположены во взаимно перпендикулярных плоскостях (рис. 1.4.16). Определить результирующую реакцию грунта, в котором уложено основание мачты.

Ответ: распределенная система сил реакции грунта приводится к левому динамическому винту с силой равной 150 кН и парой с моментом 60 кН∙м. уравнение центральной винтовой оси имеет вид

.

Центр тяжести

Центром тяжести твердого тела называется центр параллельных сил тяжести частиц данного тела.

,

Для определения положения центра тяжести однородных тел используют метод симметрии, метод разбиения на тела простой формы с известным положением центров тяжести, а также метод отрицательных масс (линий, площадей, объемов).

Пример 1.5.1. Определить координаты центра тяжести плоской фермы (рис. 1.5.1), составленной из однородных стержней с одинаковым погонным весом.

1. Применим метод разбиения, то есть представим ферму как совокупность семи стержней.

2. Найдем координаты центра тяжести фермы по формулам:

; ,

где , , – длина и координаты центра тяжести стержня с номером .

Длины и координаты центров тяжести стержней:

Тогда ,

Пример 1.5.2. Торцевая стена ангара (рис. 1.5.2) имеет форму полукруга 1 радиуса с прямоугольным дверным проемом 2 высотой и шириной Определить координаты центра тяжести стены.

1. Применим методы симметрии и отрицательных площадей, рассматривая полукруг 1 и прямоугольный вырез 2 .

2. Найдем координаты центра тяжести стены.

Поскольку ось Оy является осью симметрии, то координата

Координату центра тяжести пластины определим по формуле

где , , , – площади и координаты центров тяжести фигур 1 и 2 .

Площади и координаты центров тяжести фигур:

Задачи 1.5.1 – 1.5.4. Определить координаты центров тяжести плоских ферм (рис. 1.5.3 – 1.5.6), составленных из однородных стержней с одинаковым погонным весом.

Ответы к задачам 1.5.1 – 1.5.4:

Номер задачи 1.5.1 1.5.2 1.5.3 1.5.4
, м 1,52 3,88 3,0 1,59
, м 0,69 1,96 1,73 0,17
Рис. 1.5.3 Рис. 1.5.4
Рис. 1.5.5 Рис. 1.5.6
Рис. 1.5.7 Рис. 1.5.8

Задачи 1.5.5 – 1.5.7. Определить координаты центров тяжести однородных составных линий (рис. 1.5.7 – 1.5.9).

Ответы к задачам 1.5.5 – 1.5.7:

Номер задачи 1.5.5 1.5.6 1.5.7
, см –4,76
, см 14,16 3,31
Рис. 1.5.9 Рис. 1.5.10
Рис. 1.5.11 Рис. 1.5.12

Задача 1.5.8 . Изогнутая под прямым углом однородная проволока подвешена на нити (рис. 1.5.10). Найти соотношение между длинами участков AD и AE , при котором участок AE находится в горизонтальном положении. АВ = 0,3 l 1 .

Задача 1.5.9 . Определить координаты центра тяжести однородной проволоки (рис. 1.5.11), если a = 3 м, b = 2 м, c = 1,5 м.

Ответ: x C = 1,69 м, y C = 1,38 м, z C = 1,33 м.

Задача 1.5.10. Однородный замкнутый контур, ограничивающий полукруг, подвешен на нити (рис. 1.5.12). Определить угол α между горизонталью и диаметром полуокружности.

Ответ: α = 68,74º.

Задачи 1.5.11 1.5.14. Определить координаты центров тяжести однородных плоских фигур (рис. 1.5.13 – 1.5.16).

Ответы к задачам 1.5.11 – 1.5.14:

Номер задачи 1.5.11 1.5.12 1.5.13 1.5.14
37,07 см 32,38 см 2,31 м
11,88 см 24,83 см 1,56 м
Рис. 1.5.13 Рис. 1.5.14
Рис. 1.5.15 Рис. 1.5.16
Рис. 1.5.17 Рис. 1.5.18

Задача 1.5.15. Подставка для цапфы подшипника представляет собой деталь, состоящую из опоры в виде параллелепипеда и шпонки в форме куба (рис. 1.5.17). Определить координаты центра тяжести подставки. Размеры указаны в миллиметрах.

Ответ:

Задача 1.5.16 . Цапфа подшипника скольжения представляет собой деталь, состоящую из параллелепипеда и цилиндрической опоры (рис. 1.5.18). Определить координаты центра тяжести цапфы. Размеры указаны в миллиметрах.

Ответ: , ,

Задача 1.5.17 . Однородное тело, сечение которого изображено на рисунке 1.5.19, состоит из полушара, цилиндрической части и кругового конуса. Определить координаты центра тяжести тела. Размеры указаны в миллиметрах.

Ответ: , ,

Задача 1.5.18 . Ствол танковой пушки имеет форму усеченного конуса длины (рис. 1.5.20). Наружный диаметр ствола в месте крепления к казенной части пушки наружный диаметр в сечении, соответствующем дульному срезу канала ствола, Калибр пушки d =100 мм. Определить координату центра тяжести ствола.

Ответ:

Задача 1.5.19 . Определить координаты центра тяжести однородного тела, состоящего из двух прямоугольных параллелепипедов (рис. 1.5.21). В нижнем параллелепипеде сделан вырез в форме четверти цилиндра с радиусом основания R = 10 см. Размеры на рисунке указаны в см.

Ответ: x C = 17,1 см, y C = 20,99 см, z C = 7,84 см.

Задача 1.5.20 . Определить координаты центра тяжести однородного тела (рис. 1.5.22), состоящего из треугольной призмы и параллелепипеда с вырезом. Размеры на рисунке указаны в см.

Рис. 1.5.19 Рис. 1.5.20
Рис. 1.5.21 Рис. 1.5.22

Ответ: x C = 20,14 см, y C = 35,14 см, z C = 5 см.

Часть 2. Кинематика

Кинематика точки

Существуют три аналитических способа задания движения точки: векторный, координатный и естественный.

При векторном способе радиус-вектор движущейся точки задается как функция времени . Векторы скорости и ускорения точки равны соответственно первой и второй производной по времени от радиус-вектора:

, .

Связь между радиус-вектором и декартовыми координатами точки выражается равенством: , где , , – орты осей координат.

При координатном способе закон движения точки в декартовой системе координат дается заданием трех функций: , , . Проекции скорости и ускорения на оси координат, а также модули скорости и ускорения точки определяются по формулам:

, , , ,

При естественном способе задается траектория точки и закон движения точки по траектории , где криволинейная координата отсчитывается вдоль дуги от некоторой фиксированной точки на траектории. Алгебраическое значение скорости определяется по формуле , а ускорение точки равно геометрической сумме касательного и нормального ускорений, т.е. , , , , – радиус кривизны траектории в данной точке.


Пример 2.1.1. Снаряд движется в вертикальной плоскости согласно уравнениям , (х,у – в м, t – в с). Найти:

– уравнение траектории;

– скорость и ускорение в начальный момент;

– высоту и дальность обстрела;

– радиус кривизны в начальной и в наивысшей точках траектории.

1. Получим уравнения траектории снаряда, исключая параметр t из уравнений движения

.

Траектория снаряда – это участок параболы (рис. 2.1.1), имеющий ограничивающие точки: начальную с координатами х = 0, у = 0 и конечную, для которой х = L (дальность полета), у = 0.

2. Определим дальность полета снаряда, подставив у = 0 в уравнение траектории. Откуда найдем L = 24000 м.

3. Скорость и ускорение снаряда найдем по проекциям на оси координат:

В начальный момент времени v 0 = 500 м/с, а = 10 м/с 2 .

4. Для определения высоты полета снаряда найдем время t 1 полета до этой точки. В высшей точке проекция скорости на ось y равна нулю (рис. 2.1.1), , откуда t 1 = 40 с. Подставив t 1 в выражение для координаты у , получим значение высоты Н = 8000 м.

5. Радиус кривизны траектории

, где .

м; м.

Пример 2.1.2. В кривошипно-ползунном механизме (рис. 2.1.2) кривошип 1 вращается с постоянной угловой скоростью рад/с. Найти уравнения движения, траекторию и скорость средней точки М шатуна 2 , если ОА = АВ = 80 см.

1. Запишем уравнения движения точки M в координатной форме (рис. 2.1.3)

2. Уравнение траектории получим, исключив время t из уравнения движения:

Траектория точки М – эллипс с центром в начале координат и полуосями 120 см и 40 см.

3. Скорость точки определим по проекциям на оси координат

Задача 2.1.1. По заданным уравнениям движения точки найти уравнение ее траектории в координатной форме.

Уравнение движения Ответ

Задача 2.1.2. Найти уравнение траектории в координатной форме и закон движения точки по траектории, если даны уравнения ее движения в декартовых координатах. За начало отсчета дуговой координаты s принять начальное положение точки.

Уравнение движения Ответ
, ;
;
;
;

Задача 2.1.3. Движение точки задано уравнениями , ( – в см, – в с). Найти уравнение траектории точки в координатной форме, скорость и ускорение, касательное и нормальное ускорения точки, а также радиус кривизны траектории в момент времени с. Изобразить траекторию точки и найденные векторы скорости и ускорений на чертеже. , – в см, если, и когда угол наибольший.

Ответ: 1) ; 2) , , ; , , .


Статика твердого тела:
Пространственная система сил
§ 7. Приведение системы сил к простейшему виду

Задачи на тему

7.1 К вершинам куба приложены по направлениям ребер силы, как указано на рисунке. Каким условиям должны удовлетворять модули сил F1, F2, F3, F4, F5 и F6, чтобы они находились в равновесии?
РЕШЕНИЕ

7.2 По трем непересекающимся и непараллельным ребрам прямоугольного параллелепипеда действуют три равные по модулю силы P. Какое соотношение должно существовать между ребрами a, b и c, чтобы эта система приводилась к одной равнодействующей?
РЕШЕНИЕ

7.3 К четырем вершинам A, H, B и D куба приложены четыре равные по модулю силы: P1=P2=P3=P4=P, причем сила P1 направлена по AC, P2 по HF, P3 по BE и P4 по DG. Привести эту систему к простейшему виду.
РЕШЕНИЕ

7.4 К правильному тетраэдру ABCD, ребра которого равны a, приложены силы: F1 по ребру AB, F2 по ребру CD и F3 в точке E середине ребра BD. Величины сил F1 и F2 какие угодно, а проекции силы F3 на оси x, y и z равны +F25√3/6; -F2/2; -F2√(2/3). Приводится ли эта система сил к одной равнодействующей? Если приводится, то найти координаты x и z точки пересечения линии действия равнодействующей с плоскостью Oxz.
РЕШЕНИЕ

7.5 К вершинам куба, ребра которого имеют длину 5 см, приложены, как указано на рисунке, шесть равных по модулю сил, по 2 Н каждая. Привести эту систему к простейшему виду.
РЕШЕНИЕ

7.6 Систему сил: P1=8 Н, направленную по Oz, и P2=12 Н, направленную параллельно Oy, как указано на рисунке, где OA=1,3 м, привести к каноническому виду, определив величину главного вектора V всех этих сил и величину их главного момента M относительно произвольной точки, взятой на центральной винтовой оси. Найти углы α, β и γ, составляемые центральной винтовой осью с координатными осями, а также координаты x и y точки встречи ее с плоскостью Oxy.
РЕШЕНИЕ

7.7 Три силы P1, P2 и P3 лежат в координатных плоскостях и параллельны осям координат, но могут быть направлены как в ту, так и в другую сторону. Точки их приложения A, B и C находятся на заданных расстояниях a, b и c от начала координат. Какому условию должны удовлетворять величины этих сил, чтобы они приводились к одной равнодействующей? Какому условию должны удовлетворять величины этих сил, чтобы существовала центральная винтовая ось, проходящая через начало координат?
РЕШЕНИЕ

7.8 К правильному тетраэдру ABCD с ребрами, равными a, приложена сила F1 по ребру AB и сила F2 по ребру CD. Найти координаты x и y точки пересечения центральной винтовой оси с плоскостью Oxy.
РЕШЕНИЕ

7.9 По ребрам куба, равным a, действуют двенадцать равных по модулю сил P, как указано на рисунке. Привести эту систему сил к каноническому виду и определить координаты x и y точки пересечения центральной винтовой оси с плоскостью Oxy.
РЕШЕНИЕ

7.10 По ребрам прямоугольного параллелепипеда, соответственно равным 10 м, 4 м и 5 м, действуют шесть сил, указанных на рисунке: P1=4 Н, P2=6 Н, P3=3 Н, P4=2 Н, P5=6 Н, P6=8 Н. Привести эту систему сил к каноническому виду и определить координаты x и y точки пересечения центральной винтовой оси с плоскостью Oxy.
РЕШЕНИЕ

7.11 Равнодействующие P=8000 кН и F=5200 кН сил давления воды на плотину приложены в средней вертикальной плоскости перпендикулярно соответствующим граням на расстоянии H=4 м и h=2,4 м от основания. Сила веса G1=12000 кН прямоугольной части плотины приложена в ее центре, а сила веса G2=6000 кН треугольной части на расстоянии одной трети длины нижнего основания треугольного сечения от вертикальной грани этого сечения. Ширина плотины в основании b=10 м, в верхней части a=5 м; tg α=5/12. Определить равнодействующую распределенных сил реакции грунта, на котором установлена плотина.
РЕШЕНИЕ

7.12 Вес радиомачты с бетонным основанием G=140 кН. К мачте приложены сила натяжения антенны F=20 кН и равнодействующая сил давления ветра P=50 кН; обе силы горизонтальны и расположены во взаимно перпендикулярных плоскостях; H=15 м, h=6 м. Определить результирующую реакцию грунта, в котором уложено основание мачты.



Похожие статьи