Теорема о параллельном переносе осей инерции. Изменение моментов энергии при параллельном переносе осей

Часто при решении практических задач необходимо определять моменты инерции сечения относительно осей, различным образом ориентированных в его плоскости. При этом удобно использовать уже известные значения моментов инерции всего сечения (или отдельных составляющих его частей) относительно других осей, приводимые в технической литературе, специальных справочниках и таблицах, а также подсчитываемые по имеющимся формулам. Поэтому очень важно установить зависимости между моментами инерции одного и того же сечения относительно разных осей.

В самом общем случае переход от любой старой к любой новой системе координат может рассматриваться как два последовательных преобразования старой системы координат:

1) путем параллельного переноса осей координат в новое положение и

2) путем поворота их относительно нового начала координат. Рассмотрим первое из этих преобразований, т. е. параллельный перенос координатных осей.

Предположим, что моменты инерции данного сечения относительно старых осей (рис. 18.5) известны.

Возьмем новую систему координат оси которой параллельны прежним. Обозначим а и b координаты точки (т. е. нового начала координат) в старой системе координат

Рассмотрим элементарную площадку Координаты ее в старой системе координат равны у и . В новой системе они равны

Подставим эти значения координат в выражение осевого момента инерции относительно оси

В полученном выражении -момент инерции статический момент сечения относительно оси равен площади F сечения.

Следовательно,

Если ось z проходит через центр тяжести сечения, то статический момент и

Из формулы (25.5) видно, что момент инерции относительно любой оси, не проходящей через центр тяжести, больше момента инерции относительно оси, проходящей через центр тяжести, на величину которая всегда положительна. Следовательно, из всех моментов инерции относительно параллельных осей осевой момент инерции имеет наименьшее значение относительно оси, проходящей через центр тяжести сечения.

Момент инерции относительно оси [по аналогии с формулой (24.5)]

В частном случае, когда ось у проходит через центр тяжести сечения

Формулы (25.5) и (27.5) широко используются при вычислении осевых моментов инерции сложных (составных) сечений.

Подставим теперь значения в выражение центробежного момента инерции относительно осей

Пусть z с , у с – центральные оси сечений, – моменты инерции сечения относительно этих осей. Определим моменты инерции сечения относительно новых осей z 1 , у 1 , параллельных центральным осям и смещенных относительно них на расстояния a и d . Пусть dA – элементарная площадка в окрестности точки М с координатами y и z в центральной системе координат. Из рис. 4.3 видно, что координаты точки С в новой системе координат будут равны, .

Определим момент инерции сечения относительно оси у 1 :

Рис.4.3
z c
y c
z 1
y 1
d
a
C
Очевидно, что первый интеграл дает, второй – , так как исходная система координат – центральная, а третий – площадь сечения А .

Таким образом,

Аналогично

Изменение моментов инерции сечения при повороте осей

Найдем зависимость между моментами инерции относительно осей y , z и моментами инерции относительно осей y 1 , z 1 , повернутых на угол a . Пусть J y > J z и положительный угол a отсчитывается от оси y против часовой стрелки. Пусть координаты точки М до поворота – y , z , после поворота – y 1 , z 1 (рис. 4.4).

Из рисунка следует:

Теперь определим моменты инерции относительно осей y 1 и z 1 :

Рис. 4.4
M
z
z 1
y 1
y
a
y
y 1
z 1
z
. (4.13)

Аналогично:

Сложив почленно уравнения (4.13) и (4.14), получим:

т.е. сумма моментов инерции относительно любых взаимно перпендикулярных осей остается постоянной и не изменяется при повороте системы координат.

Главные оси инерции и главные моменты инерции

С изменением угла поворота осей a каждая из величин и меняется, а сумма их остается неизменной. Следовательно, существует такое значение

a = a 0 , при котором моменты инерции достигают экстремальных значений, т.е. один из них достигает своего максимального значения, а другой – минимального. Для нахождения значения a 0 возьмем первую производную от (или) и приравняем ее нулю:

Покажем, что относительно полученных осей центробежный момент инерции равен нулю. Для этого приравняем правую часть уравнения (4.15) нулю: , откуда, т.е. получили ту же формулу для a 0 .

Оси, относительно которых центробежный момент инерции равен нулю, а осевые моменты инерции принимают экстремальные значения, называются главными осями. Если эти оси являются также и центральными, то они называются главными центральными осями. Осевые моменты инерции относительно главных осей называются главными моментами инерции.

Обозначим главные оси через y 0 и z 0 . Тогда

Если сечение имеет ось симметрии, то эта ось всегда является одной из главных центральных осей инерции сечения.

Введем декартову прямоугольную систему координат O xy . Рассмотрим в плоскости координат произвольное сечение (замкнутую область) с площадью A (рис. 1).

Статическими моментами

Точка C с координатами (x C , y C)

называется центром тяжести сечения .

Если оси координат проходят через центр тяжести сечения, то статические моменты сечения равны нулю:

Осевыми моментами инерции сечения относительно осей x и y называются интегралы вида:

Полярным моментом инерции сечения относительно начала координат называется интеграл вида:

Центробежным моментом инерции сечения называется интеграл вида:

Главными осями инерции сечения называются две взаимно перпендикулярные оси, относительно которых I xy =0. Если одна из взаимно перпендикулярных осей является осью симметрии сечения, то I xy =0 и, следовательно, эти оси - главные. Главные оси, проходящие через центр тяжести сечения, называются главными центральными осями инерции сечения

2.Теорема Штейнера-Гюйгенса о параллельном переносе осей

Теорема Штейнера-Гюйгенса (теорема Штейнера).
Осевой момент инерции сечения I относительно произвольной неподвижной оси x равен сумме осевого момента инерции этого сечения I с относительной параллельной ей оси x * , проходящей через центр масс сечения, и произведения площади сечения A на квадрат расстояния d между двумя осями.

Если известны моменты инерции I x и I y относительно осей x и y, то относительно осей ν и u, повернутых на угол α, моменты инерции осевые и центробежный вычисляют по формулам:

Из приведенных формул видно, что

Т.е. сумма осевых моментов инерции при повороте взаимно перпендикулярных осей не меняется, т.е.оси u и v, относительно которых центробежный момент инерции сечения равен нулю, а осевые моменты инерции І u и I v имеют экстремальные значения max или min, называют главными осями сечения. Главные оси, проходящие через центр тяжести сечения, называются главными центральными осями сечения . Для симметричных сечений оси их симметрии всегда являются главными центральными осями. Положение главных осей сечения относительно других осей определяют, используя соотношение:

где α 0 – угол, на который надо развернуть оси x и y, чтобы они стали главными (положительный угол принято откладывать против хода часовой стрелки, отрицательный – по ходу часовой стрелки). Осевые моменты инерции относительно главных осей называются главными моментами инерции :

знак плюс перед вторым слагаемым относится к максимальному моменту инерции, знак минус – к минимальному.



2. Статические моменты площади сечения относительно осей Oz и Оy (см 3 , м 3):

4. Центробежный момент инерции сечения относительно осей Oz и Oy (см 4 , м 4):

Так как , то

Осевые J z и J y и полярный J p моменты инерции всегда положительные, так как под знаком интеграла находятся координаты во второй степени. Статические моменты S z и S y , а также центробежный момент инерции J zy могут быть как положительными, так и отрицательными.

В сортаменте прокатной стали для уголков приводятся значения центробежных моментов по модулю. В расчет следует вводить их значения с учетом знака.

Для определения знака центробежного момента уголка (рис. 3.2) мысленно представим его в виде суммы трех интегралов, которые вычисляются отдельно для частей сечения, расположенных в четвертях системы координат. Очевидно, что для частей, расположенных в I и III четвертях будем иметь положительное значение этого интеграла, так как произведение zydA будет положительным, а интегралы, вычисляемые для частей, расположенных во II и IV четвертях будут отрицательными (произведение zydA будет отрицательным). Таким образом, для уголка на рис. 3.2,а значение центробежного момента инерции будет отрицательным.

Рассуждая подобным образом для сечения, имеющего хотя бы одну ось симметрии (рис. 3.2,б) можно прийти к заключению, что центробежный момент инерции J zy равен нулю, если одна из осей (Оz или Оy) является осью симметрии сечения. Действительно, для частей треугольника, расположенных в 1 и 2 четвертях центробежные моменты инерции будут отличаться только знаком. Тоже можно сказать относительно частей, которые находятся в III и IV четвертях.

Статические моменты. Определение центра тяжести

Вычислим статические моменты относительно осей Оz и Оy прямоугольника, показанного на рис. 3.3.

Рис 3.3. К вычислению статических моментов

Здесь: А – площадь сечения, y C и z C – координаты его центра тяжести. Центр тяжести прямоугольника находится на пересечении диагоналей.

Очевидно, что, если оси, относительно которых вычисляются статические моменты, проходят через центр тяжести фигуры, то его координаты равны нулю (z C = 0, y C = 0), и, в соответствии с формулой (3.6), статические моменты также будут равны нулю. Таким образом, центр тяжести сечения – это точка, обладающая следующим свойством: статический момент относительно любой оси, проходящей через нее , равен нулю .

Формулы (3.6) позволяют найти координаты центра тяжести z C и y C сечения сложной формы. Если сечение можно представить в виде n частей, для которых известны площади и положение центров тяжести, то вычисление координат центра тяжести всего сечения можно записать в виде:

. (3.7)

Изменение моментов инерции при параллельном переносе осей

Пусть известны моменты инерции J z , J y и J zy относительно осей Oyz . Необходимо определить моменты инерции J Z , J Y и J ZY относительно осей O 1 YZ , параллельных осям Oyz (рис. 3.4) и отстоящих от них на расстояния a (по горизонтали) и b (по вертикали)

Рис 3.4. Изменение моментов инерции при параллельном переносе осей

Координаты элементарной площадки dA связаны между собой следующими равенствами: Z = z + a ; Y = y + b .

Вычислим моменты инерции J Z , J Y и J ZY .


(3.8)

(3.9)

(3.10)

Если точка O пересечения осей Oyz совпадает с точкой С – центром тяжести сечения (рис. 3.5) статические моменты S z и S y становятся равными нулю, и формулы упрощаютсяY i и Z i нужно брать с учетом знаков. На осевые моменты инерции знаки координат не повлияют (координаты возводятся во вторую степень), а вот на центробежный момент инерции знак координаты окажет существенное влияние (произведение Z i Y i A i может оказаться отрицательным).

Дано: моменты инерции фигуры относительно осей z, y; расстояния между этими и параллельными осями z 1 , y 1 – a, b.

Определить: моменты инерции относительно осей z 1 , y 1 (рис.4.7).

Координаты любой точки в новой системе z 1 Oy 1 можно выразить через координаты в старой системе так:

z 1 = z + b, y 1 = y + a.

Подставляем эти значения в формулы (4.6) и (4.8) и интегрируем почленно:

В соответствии с формулами (4.1) и (4.6) получим

,

, (4.13)

Если исходные данные оси zCy – центральные, то статические моменты S z и

S y равны нулю и формулы (4.13) упрощаются:

,

, (4.14)

.

Пример: определить осевой момент инерции прямоугольника относительно оси z 1 , проходящей через основание (рис.4.6,а). По формуле (4.14)

4.4. Зависимость между моментами инерции при повороте осей

Дано: моменты инерции произвольной фигуры относительно координатных осей z, y; угол поворота этих осей α (рис.4.8). Считаем угол поворота против часовой стрелки положительным.

Определить: моменты инерции фигуры относительно z 1 , y 1 .

Координаты произвольной элементарной площадки dF в новых осях выражаются через координаты прежней системы осей следующим образом:

z 1 = OB = OE + EB = OE + DC = zcos α + ysin α,

y 1 = AB = AC – BC = AC – ED = ycos α – zsin α.

Подставим эти значения в (4.6) и (4.8) и проинтегрируем почленно:

,

,

Учитывая формулы (4.6) и (4.8), окончательно находим:

. (4.16)

Складывая формулы (4.15), получим: (4.17)

Таким образом, при повороте осей сумма осевых моментов инерции остаётся постоянной . При этом каждый из них меняется в соответствии с формулами (4.15). Ясно, что при каком-то положении осей моменты инерции будут иметь экстремальные значения: один из них будет наибольшим, другой – наименьшим.

4.5. Главные оси и главные моменты инерции

Наибольшее практическое значение имеют главные центральные оси, центробежный момент инерции относительно которых равен нулю. Будем обозначать такие оси буквами u, υ. Следовательно, J uυ = 0. Начальную произвольную систему координат z, y надо повернуть на такой угол α 0 , чтобы центробежный момент инерции стал равным нулю. Приравняв нулю (4.16), получим

. (4.18)

Оказывается, что теория моментов инерции и теория плоского напряжённого состояния описываются одним и тем же математическим аппаратом, так как формулы (4.15) – (4.18) идентичны формулам (3.10), (3.11) и (3.18). Только вместо нормальных напряжений σ записываются осевые моменты инерции J z и J y , а вместо касательных напряжений τ zy – центробежный момент инерции J zy . Поэтому формулы для главных осевых моментов инерции приводим без вывода, по аналогии с формулами (3.18):

.(4.19)

Полученные из (4.18) два значения угла α 0 отличаются друг от друга на 90 0 , меньший из этих углов по абсолютной величине не превышает 45 0 .

      Радиус инерции и момент сопротивления

Момент инерции фигуры относительно какой-либо оси можно представить в виде произведения площади фигуры на квадрат некоторой величины, называемой радиусом инерции :

, (4.20)

где i z – радиус инерции относительно оси z.

Из выражения (4.20) следует, что

,
. (4.21)

Главным центральным осям инерции соответствуют главные радиусы инерции

,
. (4.22)

Зная главные радиусы инерции, можно графическим способом найти радиус инерции (а, следовательно, и момент инерции) относительно произвольной оси.

Рассмотрим еще одну геометрическую характеристику, характеризующую прочность стержня при кручении и изгибе – момент сопротивления . Момент сопротивления равен моменту инерции, делённому на расстояние от оси (или от полюса) до наиболее удалённой точки сечения. Размерность момента сопротивления – единица длины в кубе (см 3).

Для прямоугольника (рис.4.6,а)
,
, поэтому осевые моменты сопротивления

,
. (4.23)

Для круга
(рис.4.6,б),
, поэтому полярный момент сопротивления

. (4.24)

Для круга
,
, поэтому осевой момент сопротивления

. (4.25)



Похожие статьи