Центром распределения вероятностей случайной величины служит. Нормальный закон распределения вероятностей

Введение

Теория вероятностей является одним из классических разделов математики. Она имеет длительную историю. Основы этого раздела науки были заложены великими математиками. Назову, например, Ферма, Бернулли, Паскаля. Позднее развитие теории вероятностей определились в работах многих ученых. Большой вклад в теорию вероятностей внесли ученые нашей страны: П.Л.Чебышев, А.М.Ляпунов, А.А.Марков, А.Н.Колмогоров. Вероятностные и статистические методы в настоящее время глубоко проникли в приложения. Они используются в физике, технике, экономке, биологии и медицине. Особенно возросла их роль в связи с развитием вычислительной техники.

Например, для изучения физических явлений производят наблюдения или опыты. Их результаты обычно регистрируют в виде значений некоторых наблюдаемых величин. При повторении опытов мы обнаруживаем разброс их результатов. Например, повторяя измерения одной и той же величины одним и тем же прибором при сохранении определенных условий (температура, влажность и т.п.), мы получаем результаты, которые хоть немного, но все же отличаются друг от друга. Даже многократные измерения не дают возможности точно предсказать результат следующего измерения. В этом смысле говорят, что результат измерения есть величина случайная. Еще более наглядным примером случайной величины может служить номер выигрышного билета в лотерее. Можно привести много других примеров случайных величин. Все же и в мире случайностей обнаруживаются определенные закономерности. Математический аппарат для изучения таких закономерностей и дает теория вероятностей. Таким образом, теория вероятностей занимается математическим анализом случайных событий и связанных с ними случайных величин.

1. Случайные величины

Понятие случайной величины является основным в теории вероятностей и ее приложениях. Случайными величинами, например, являются число выпавших очков при однократном бросании игральной кости, число распавшихся атомов радия за данный промежуток времени, число вызовов на телефонной станции за некоторый промежуток времени, отклонение от номинала некоторого размера детали при правильно налаженном технологическом процессе и т. д.

Таким образом, случайной величиной называется величина, которая в результате опыта может принимать то или иное значение, причем заранее известно какое именно.

Случайные величины можно разделить на две категории.

Дискретной случайной величиной называется такая величина, которая в результате опыта может принимать определенные значения с определенной вероятностью, образующие счетное множество (множество, элементы которого могут быть занумерованы).

Это множество может быть как конечным, так и бесконечным.

Например, количество выстрелов до первого попадания в цель является дискретной случайной величиной, т.к. эта величина может принимать и бесконечное, хотя и счетное количество значений.

Непрерывной случайной величиной называется такая величина, которая может принимать любые значения из некоторого конечного или бесконечного промежутка.

Очевидно, что число возможных значений непрерывной случайной величины бесконечно.

Для задания случайной величины недостаточно просто указать ее значение, необходимо также указать вероятность этого значения.

2. Равномерное распределение

Пусть сегмент оси Ox есть шкала некоторого прибора. Допустим, что вероятность попадания указателя в некоторый отрезок шкалы пропорциональна длине этого отрезка и не зависит от места отрезка на шкале. Отметка указателя прибора есть случайная величина

могущая принять любое значение из сегмента . Поэтому и ( < ) - две любые отметки на шкале, то согласно условию имеем - коэффициент пропорциональности, не зависящий от и , а разность , - длина сегмента . Так как при =a и =b имеем , то , откуда .

Таким образом

(1)

Теперь легко найти функцию F(x) распределения вероятностей случайной величины

. Если , то не принимает значений, меньших a. Пусть теперь . По аксиоме сложения вероятностей . Согласно формуле (1), в которой принимаем , имеем , то при получаем

Наконец, если

, то , так как значения лежит на сегменте и, следовательно, не превосходят b . Итак, приходим к следующей функции распределения:

График функции

представлен на рис. 1.

Плотность распределения вероятностей найдем по формуле. Если

или , то . Если , то

Таким образом,

(2)

График функции

изображен на рис. 2. Заметим, что в точках a и b функция терпит разрыв.

Величина, плотность распределения которой задана формулой (2), называется равномерно распределенной случайной величиной.

3. Биномиальное распределение

Биномиальное распределение в теории вероятностей - распределение количества «успехов» в последовательности из n независимых случайных экспериментов, таких что вероятность «успеха» в каждом из них равна p .

- конечная последовательность независимых случайных величин с распределением Бернулли, то есть

Построим случайную величину Y .

) играет осо-бо важную роль в теории вероятностей и чаще других применяется в решении практических задач. Его главная особенность в том, что он является предельным законом, к которому приближаются дру-гие законы распределения при весьма часто встречающихся типич-ных условиях. Например, сумма достаточно большого числа неза-висимых (или слабо зависимых) случайных величин приближенно подчиняется нормальному закону, и это выполняется тем точнее, чем больше случайных величин суммируется.

Экспериментально доказано, что нормальному закону под-чиняются погрешности измерений, отклонения геометрических размеров и положения элементов строительных конструкций при их изготовлении и монтаже, изменчивость физико-механических характеристик материалов и нагру-зок, действующих на строительные конструкции.

Распределению Гаусса подчи-няются почти все случайные вели-чины, отклонение которых от сред-них значений вызывается большой совокупностью случайных факто-ров, каждый из которых в отдельности незначителен (центральная предельная теорема).

Нормальным распределением называется распределение случайной непрерывной величины, для которых плотность вероят-ностей имеет вид (рис. 18.1).

Рис. 18.1. Нормальный закон распределения при а 1 < a 2 .

(18.1)

где а и — параметры распределения.

Вероятностные характеристики случайной величины, распре-деленной по нормальному закону, равны:

Математическое ожидание (18.2)

Дисперсия (18.3)

Среднеквадратичное отклонение (18.4)

Коэффициент асимметрии А = 0 (18.5)

Эксцесс Е = 0. (18.6)

Параметр σ, входящий в распределение Гаусса равен сред-неквадратичному отношению слу-чайной величины. Величина а оп-ределяет положение центра рас-пределения (см. рис. 18.1), а величина а — ширину распределе-ния (рис. 18.2), т.е. статистический разброс вокруг средней величины.

Рис. 18.2. Нормальный закон распределения при σ 1 < σ 2 < σ 3

Вероятность попадания в заданный интервал (от x 1 до x 2) для нормального распределения, как и во всех случаях, определяется интегралом от плотности вероятности (18.1), который не выража-ется через элементарные функции и представляется специальной функцией, называется функцией Лапласа (интеграл вероятностей).

Одно из представлений интеграла вероятностей:

Величина и называется квантилем.

Видно, что Ф(х) — нечетная функция, т. е. Ф(-х) = -Ф(х). Значения этой функции вычислены и представлены в виде таблиц в технической и учебной литературе.


Функция распределения нормального закона (рис. 18.3) может быть выражена через ин-теграл вероятностей:

Рис. 18.2. Функция нормального закона распределения.

Вероятность попадания случайной величины, распределенной по нормальному закону, в интервал от х. до х, определяется выра-жением:

Следует заметить, что

Ф(0) = 0; Ф(∞) = 0,5; Ф(-∞) = -0,5.

При решении практических задач, связанных с распределе-нием, часто приходится рассматривать вероятность попадания в интервал, симметричный относительно математического ожидания, если длина этого интервала т.е. если сам интервал имеет грани-цу от до , имеем:

При решении практических задач границы отклонений слу-чайных величин выражаются через стандарт, среднеквадратичное отклонение, умноженное на некоторый множитель, определяющий границы области отклонений случайной величины.

Принимая и а также используя формулу (18.10) и таблицу Ф(х) (приложение № 1), получим

Эти формулы показывают , что если случайная величина име-ет нормальное распределение, то вероятность ее отклонения от сво-его среднего значения не более чем на σ составляет 68,27 %, не бо-лее чем на 2σ — 95,45 % и не более чем на Зσ — 99,73 %.

Поскольку величина 0,9973 близка к единице, практически считается невозможным отклонение нормального распределения случайной величины от математического ожидания более чем на Зσ. Это правило, справедливое только для нормального распределения, называется правилом трех сигм. Нарушение его имеет вероятность Р = 1 - 0,9973 = 0,0027. Этим правилом пользуются при установле-нии границ допустимых отклонений допусков геометрических ха-рактеристик изделий и конструкций.

Наряду со случайными событиями одним из основных понятий теории вероятностей является понятие случайной величины - величины, численное значение которой может меняться в зависимости от результата стохастического эксперимента .

Примерами случайных величин могут быть: отметка на экзамене - целое, положительное число (от 2 до 5); число оборотов спутника вокруг Земли до его гибели - любое натуральное число (в принципе ничем не ограниченное); продолжительность работы телевизора до выхода из строя - любое неотрицательное число и так далее.

Обозначать случайные величины будем греческими буквами - x, h, z и другими, а их возможные значения - x, y, z , снабжая их при необходимости индексами.

Таким образом, случайная величина x - число, которое ставится в соответствие каждому возможному исходу стохастического эксперимента. Поскольку исходы опыта полностью определяются элементарными событиями, можно рассматривать случайную величину как функцию от элементарного события w на пространстве элементарных событий W.

В зависимости от возможных значений все случайные величины можно разбить на два класса: дискретные и непрерывные.

Дискретной назовём случайную величину , возможные значения которой образуют или конечное множество, или счётное (бесконечное множество, элементы которого можно пронумеровать).

Примером случайной величины, принимающей конечное число значений, является число очков, выпавших при бросании кубика; примером случайной величины, принимающей счетное число значений может служить пуассоновcкая величина.

Для задания случайной величины недостаточно знать все её возможные значения, две случайные величины могут иметь одинаковые возможные значения, но принимать их с различными вероятностями (случайные величины - оценки на экзамене у сильных и слабых студентов имеют одинаковые возможные значения, но разные вероятности). Поэтому необходимо указать и возможные значения случайной величины, и вероятности, с которыми она может их принять.

Назовём законом распределения дискретной случайной величины правило, по которому каждому возможному значению xiставится в соответствие вероятность pi, с которой случайная величина может принять это значение.

Закон распределения дискретной случайной величины может быть задан графически, аналитически и таблично. В последнем случае задаётся таблица, где в одной строке записаны все возможные значения xi , а в другой соответствующие им вероятности p i . Её называют таблицей или рядом распределения вероятности.

Поскольку в результате опыта случайная величина может принять одно и только одно из возможных значений, то события, заключающиеся в том, что x примет значение x 1 , ... , x n попарно несовместны и в сумме образуют достоверное событие. Отсюда следует, что вероятность суммы этих событий равна 1 и мы приходим к важному соотношению.

. (2.1)

Замечание. Если множество возможных значений бесконечно и счётно, то сумма будет содержать бесконечное число слагаемых. Такую сумму называют суммой числового ряда. В этом случае находят сумму первых n членов - S n и затем переходят к пределу при n ® ¥. Таким способом в школьном курсе алгебры была найдена сумма членов бесконечной убывающей геометрической прогрессии.

Пример. Абитуриент сдаёт два вступительных экзамена: по математике и физике. Составить закон распределения случайной величины x, числа полученных пятёрок, если вероятность получения пятёрки по математике равна 0,8, а по физике - 0,6.

Решение. Очевидно, возможные значения x есть 0, 1, 2, причём

Здесь A 1 и A 2 - события, заключающиеся в том, что математика и соответственно физика сданы на 5. При вычислении вероятностей использовалась несовместность слагаемых и независимость сомножителей. Сведём полученное в таблицу и нарисуем график, который называется многоугольником распределения (рис. 2.1):

– ряд распределения вероятностей.

Как легко проверить, условие нормировки (2.1) выполняется.

Пример. Вероятность появления события A при одном испытании равна p . Испытания повторяются до появления события A . Составить закон распределения случайной величины x - числа испытаний, предшествующих первому появлению A .

Решение. Возможные значения x - все целые числа от 0 до ¥. Предположим, что x = n и подсчитаем вероятность такого события. Очевидно, оно произойдёт, если в первых n испытаниях произойдут события а в (n + 1) - произойдёт A . Отсюда искомая вероятность равна

здесь q = 1 - p и мы воспользовались независимостью сомножителей. Условие нормировки принимает вид

.

Здесь мы воспользовались формулой суммы членов бесконечно убывающей прогрессии со знаменателем q и первым (при n = 0) членом, равным p .

  1. Функция распределения и плотность распределения случайной величины

Для задания любой случайной величины можно ввестифункцию распределения F(x) , равную вероятности того, что случайная величина x примет значение, меньшее x:

Легко видеть, что F(x) – неубывающая функция, при этом F(-¥)=0; F(¥)=1.

По известному ряду распределения функцию распределения дискретной случайной величины находим так:

, (2.3)

где (x < x i) означает, что суммирование ведётся по всем индексам i, для которых это неравенство выполняется. Функция распределения F (x ) дискретной случайной величины x является ступенчатой, сохраняющей постоянное значение на каждом интервале, не содержащем точек x i , и терпящей в этих точках скачок, равный p i . Для примера о количестве пятерок функция распределения и её график (рис. 2.2) представлены ниже.

Обратимся теперь к непрерывной случайной величине x, которая в отличие от дискретной может принять любое значение из некоторого промежутка, т.е. ее возможные значения сплошь заполняют некоторый интервал и потому их множество несчетно. Например:

1) размер детали массового производства;

2) урожай с одной сотки;

3) ошибка измерения;

4) продолжительность работы устройства до момента отказа.

Распределение вероятностей непрерывной случайной величины x можно задать либо функцией распределения F(x) = P(x< x), либо ее производной , называемой плотностью распределения вероятности или плотностью вероятности . В точках, где производная не определена, будем считать, что f(x) = 0. В силу монотонности функции F(x) плотность f(x) ³ 0 всюду. Зная F(x) , можем найти плотность вероятности по формуле f(x) = F’(x) , а зная f(x) , найдем функцию распределения как .

Для непрерывной случайной величины xвероятность попадания ее в промежуток с концами a и b (неважно, открытый или замкнутый) равна

Полезно помнить, что:

1) плотность вероятности f(x) это есть вероятность попадания x в интервал (x, x+Dx), деленная на его длину Dx, когда длина Dx исчезающе мала;

2) вся площадь между графиком f(x) и осью Ox равна 1:

(2.5)

(аналог формулы (2.1)).

В качестве примера непрерывного распределения ниже мы рассмотрим так называемое нормальное распределение, его плотность .

  1. Числовые характеристики случайной величины

Широко пользуются некоторыми суммарными характеристиками случайной величины. К важнейшим из них относятся математическое ожидание и дисперсия.

Математическим ожиданием дискретной случайной величины x назовём сумму произведений всех её возможных значений на их вероятности

Подчеркнём, что математическое ожидание случайной величины есть некоторое число (постоянная, неслучайная величина).

Пример. Закон распределения случайной величины задан таблично. Найти математическое ожидание.

Решение. По определению,

M(x) = 0 × 0,08 + 1 × 0,44 + 2 × 0,48 = 1,4.

Для понимания очень полезна механическая аналогия. Трактуя возможные значения случайной величины как координаты точек на оси, а соответствующие им вероятности - как некоторые (вероятностные) массы, можно заметить, что математическое ожидание является аналогом понятия центра масс, то есть является тем “средним, центральным” значением, вокруг которого распределены все возможные значения случайной величины.

Пример. Согласно американским статистическим таблицам смертности вероятность того, что 25-летний человек проживет еще год, равна 0,992 (следовательно, вероятность того, что он умрет, равна 0,008). Страховая компания предлагает такому человеку застраховать свою жизнь на год на сумму 1000$; страховой взнос равен 10$. Найти математическое ожидание прибыли компании.

Решение. Величина прибыли X есть случайная величина со значениями +10$ (если застрахованный человек не умрет) и –990$ (если он умрет). Составим таблицу распределения вероятностей.

MX = 10 × 0,992 – 990 × 0,008 = 2.

Ожидаемая средняя прибыль положительна, что дает возможность страховой компании продолжать дело, оставлять резервный капитал для выплаты страховых сумм, производить административные расходы, получать прибыль.

Пример. Игра в рулетку. На колесе рулетки имеется 38 одинаково расположенных гнезд, которые нумеруются так: 00, 0, 1, 2,…, 35, 36. Игрок может поставить 1 доллар на любой номер. Если его номер выиграл, игрок получает 36$ (35$ выигрыша плюс 1$ ставки). Найти математическое ожидание выигрыша игрока.

Решение. Составим таблицу вероятностей.

MX= –37/38 + 35/38 = –2/38 = –1/19.

Игра не является “справедливой”, игорный дом, как и страховая компания, обеспечивает себе средний доход на “накладные расходы” и риск.

Пример. За дом внесен страховой взнос 200 рублей. Вероятность ему сгореть в данной местности для такого типа домов оценивается как 0,01. В случае, если дом сгорит, страховая компания должна выплатить за него 10000 рублей. Какую прибыль в среднем ожидает получить компания? На какую прибыль сможет рассчитывать компания, если для получения страховой суммы в размере 10000 она будет брать взнос 100 рублей?

Ожидаемая средняя прибыль для взноса 200 рублей:

M(X) = –9800 × 0,01 + 200 × 0,99 = –98 + 198 = 100.

То же для страхового взноса 100 рублей:

M(X) = –9900 × 0,01 + 100 × 0,99 = -99 + 99 = 0.

– такая работа компании называлась бы справедливой, но у нее не только бы отсутствовала прибыль, но и не было бы денег на административные расходы.

Как правило, приходится вычислять математические ожидания много более сложных случайных величин. Так, например, страховые расчеты производятся не за один год, а за много лет, и надо учитывать ежегодную прибыль от вкладов и т.д. При этом помогает знание свойств этой характеристики.

На практике большинство случайных величин, на которых воздействует большое количество случайных факторов, подчиняются нормальному закону распределения вероятностей. Поэтому в различных приложениях теории вероятностей этот закон имеет особое значение.

Случайная величина $X$ подчиняется нормальному закону распределения вероятностей, если ее плотность распределения вероятностей имеет следующий вид

$$f\left(x\right)={{1}\over {\sigma \sqrt{2\pi }}}e^{-{{{\left(x-a\right)}^2}\over {2{\sigma }^2}}}$$

Схематически график функции $f\left(x\right)$ представлен на рисунке и имеет название «Гауссова кривая». Справа от этого графика изображена банкнота в 10 марок ФРГ, которая использовалась еще до появления евро. Если хорошо приглядеться, то на этой банкноте можно заметить гауссову кривую и ее первооткрывателя величайшего математика Карла Фридриха Гаусса.

Вернемся к нашей функции плотности $f\left(x\right)$ и дадим кое-какие пояснения относительно параметров распределения $a,\ {\sigma }^2$. Параметр $a$ характеризует центр рассеивания значений случайной величины, то есть имеет смысл математического ожидания. При изменении параметра $a$ и неизмененном параметре ${\sigma }^2$ мы можем наблюдать смещение графика функции $f\left(x\right)$ вдоль оси абсцисс, при этом сам график плотности не меняет своей формы.

Параметр ${\sigma }^2$ является дисперсией и характеризует форму кривой графика плотности $f\left(x\right)$. При изменении параметра ${\sigma }^2$ при неизмененном параметре $a$ мы можем наблюдать, как график плотности меняет свою форму, сжимаясь или растягиваясь, при этом не сдвигаясь вдоль оси абсцисс.

Вероятность попадания нормально распределенной случайной величины в заданный интервал

Как известно, вероятность попадания случайной величины $X$ в интервал $\left(\alpha ;\ \beta \right)$ можно вычислять $P\left(\alpha < X < \beta \right)=\int^{\beta }_{\alpha }{f\left(x\right)dx}$. Для нормального распределения случайной величины $X$ с параметрами $a,\ \sigma $ справедлива следующая формула:

$$P\left(\alpha < X < \beta \right)=\Phi \left({{\beta -a}\over {\sigma }}\right)-\Phi \left({{\alpha -a}\over {\sigma }}\right)$$

Здесь функция $\Phi \left(x\right)={{1}\over {\sqrt{2\pi }}}\int^x_0{e^{-t^2/2}dt}$ - функция Лапласа. Значения этой функции берутся из . Можно отметить следующие свойства функции $\Phi \left(x\right)$.

1 . $\Phi \left(-x\right)=-\Phi \left(x\right)$, то есть функция $\Phi \left(x\right)$ является нечетной.

2 . $\Phi \left(x\right)$ - монотонно возрастающая функция.

3 . ${\mathop{lim}_{x\to +\infty } \Phi \left(x\right)\ }=0,5$, ${\mathop{lim}_{x\to -\infty } \Phi \left(x\right)\ }=-0,5$.

Для вычисления значений функции $\Phi \left(x\right)$ можно также воспользоваться мастером функция $f_x$ пакета Excel: $\Phi \left(x\right)=НОРМРАСП\left(x;0;1;1\right)-0,5$. Например, вычислим значений функции $\Phi \left(x\right)$ при $x=2$.

Вероятность попадания нормально распределенной случайной величины $X\in N\left(a;\ {\sigma }^2\right)$ в интервал, симметричный относительно математического ожидания $a$, может быть вычислена по формуле

$$P\left(\left|X-a\right| < \delta \right)=2\Phi \left({{\delta }\over {\sigma }}\right).$$

Правило трех сигм . Практически достоверно, что нормально распределенная случайная величина $X$ попадет в интервал $\left(a-3\sigma ;a+3\sigma \right)$.

Пример 1 . Случайная величина $X$ подчинена нормальному закону распределения вероятностей с параметрами $a=2,\ \sigma =3$. Найти вероятность попадания $X$ в интервал $\left(0,5;1\right)$ и вероятность выполнения неравенства $\left|X-a\right| < 0,2$.

Используя формулу

$$P\left(\alpha < X < \beta \right)=\Phi \left({{\beta -a}\over {\sigma }}\right)-\Phi \left({{\alpha -a}\over {\sigma }}\right),$$

находим $P\left(0,5;1\right)=\Phi \left({{1-2}\over {3}}\right)-\Phi \left({{0,5-2}\over {3}}\right)=\Phi \left(-0,33\right)-\Phi \left(-0,5\right)=\Phi \left(0,5\right)-\Phi \left(0,33\right)=0,191-0,129=0,062$.

$$P\left(\left|X-a\right| < 0,2\right)=2\Phi \left({{\delta }\over {\sigma }}\right)=2\Phi \left({{0,2}\over {3}}\right)=2\Phi \left(0,07\right)=2\cdot 0,028=0,056.$$

Пример 2 . Предположим, что в течение года цена на акции некоторой компании есть случайная величина, распределенная по нормальному закону с математическим ожиданием, равным 50 условным денежным единицам, и стандартным отклонением, равным 10. Чему равна вероятность того, что в случайно выбранный день обсуждаемого периода цена за акцию будет:

а) более 70 условных денежных единиц?

б) ниже 50 за акцию?

в) между 45 и 58 условными денежными единицами за акцию?

Пусть случайная величина $X$ - цена на акции некоторой компании. По условию $X$ подчинена нормальному закону распределению с параметрами $a=50$ - математическое ожидание, $\sigma =10$ - стандартное отклонение. Вероятность $P\left(\alpha < X < \beta \right)$ попадания $X$ в интервал $\left(\alpha ,\ \beta \right)$ будем находить по формуле:

$$P\left(\alpha < X < \beta \right)=\Phi \left({{\beta -a}\over {\sigma }}\right)-\Phi \left({{\alpha -a}\over {\sigma }}\right).$$

$$а)\ P\left(X>70\right)=\Phi \left({{\infty -50}\over {10}}\right)-\Phi \left({{70-50}\over {10}}\right)=0,5-\Phi \left(2\right)=0,5-0,4772=0,0228.$$

$$б)\ P\left(X < 50\right)=\Phi \left({{50-50}\over {10}}\right)-\Phi \left({{-\infty -50}\over {10}}\right)=\Phi \left(0\right)+0,5=0+0,5=0,5.$$

$$в)\ P\left(45 < X < 58\right)=\Phi \left({{58-50}\over {10}}\right)-\Phi \left({{45-50}\over {10}}\right)=\Phi \left(0,8\right)-\Phi \left(-0,5\right)=\Phi \left(0,8\right)+\Phi \left(0,5\right)=$$

Среди законов распределения для дискретных случайных величин наиболее распространенным является биномиальный закон распределения. Биномиальное распределение имеет место в следующих условиях. Пусть случайная величина - число появлений некоторого события в независимых испытаниях, вероятность появления в отдельном испытании равна . Данная случайная величина является дискретной случайной величиной, ее возможные значения . Вероятность того, что случайная величина примет значение вычисляется по формуле Бернулли: .

Определение 15. Закон распределения дискретной случайной величины называется биномиальным законом распределения, если вероятности значений случайной величины вычисляются по формуле Бернулли. Ряд распределения будет иметь вид:

Убедимся, что сумма вероятностей различных значений случайной величины равна 1. Действительно,

Так как при данных вычислениях получилась биномиальная формула Ньютона, поэтому закон распределения называется биномиальным. Если случайная величина имеет биномиальное распределение, то ее числовые характеристики находятся по формулам:

(42) (43)

Пример 15. Имеется партия из 50 деталей. Вероятность брака для одной детали . Пусть случайная величина - число бракованных деталей в данной партии. Найти математическое ожидание, дисперсию и среднее квадратичное отклонение данной случайной величины. Решение. Случайная величина имеет биномиальное распределение, так как вероятность того, что она примет значение вычисляется по формуле Бернулли. Тогда ее математическое ожидание находится по формуле (41), а именно, ; дисперсию находим по формуле (42): . Тогда среднее квадратичное отклонение будет равно . Вопрос. Приобретено 200 лотерейных билетов, вероятность выигрыша одного билета равна 0,01. Тогда среднее число лотерейных билетов, на которые выпадут выигрыши, равно: а) 10; б) 2; в) 20; г) 1.

Закон распределения Пуассона

При решении многих практических задач приходится иметь дело с дискретными случайными величинами, которые подчиняются закону распределения Пуассона. Типичными примерами случайной величины, имеющей распределение Пуассона, являются: число вызовов на телефонной станции за некоторое время ; число отказов сложной аппаратуры за время , если известно, что отказы независимы друг от друга и в среднем на единицу времени приходится отказов.Ряд распределения будет иметь вид:

То есть вероятность того, что случайная величина примет значение вычисляется по формуле Пуассона: поэтому данный закон и называется законом распределения Пуассона. Случайная величина, распределенной по закону Пуассона, имеет следующие числовые характеристики:

Распределение Пуассона зависит от одного параметра , который является математическим ожиданием случайной величины. На рисунке 14 показан общий вид многоугольника распределения Пуассона при различных значениях параметра .

Распределение Пуассона может быть использовано как приближенное в тех случаях, когда точным распределением случайной величины является биномиальное распределение, при этом число испытаний велико, а вероятность появления события в отдельном испытании мала, поэтому закон распределения Пуассона называют законом редких событий. А еще, если математическое ожидание мало отличается от дисперсии, то есть когда . В связи с этим распределение Пуассона имеет большое количество различных приложений. Пример 16. Завод отправляет на базу 500 доброкачественных изделий. Вероятность того, что в пути изделие повредится, равна 0,002. Найти математическое ожидание числа поврежденных при перевозке деталей. Решение. Случайная величина имеет распределение Пуассона, поэтому . Вопрос. Вероятность искажения символа при передаче сообщения равна 0,004. Чтобы среднее число искаженных символов было равно 4, надо передать 100 символов.



Похожие статьи