Уравнения равновесия пространственной системы. Уравнения равновесия пространственной системы сил

Произвольную простран­ственную систему сил, как и плос­кую, можно привести к какому-нибудь центру О и заменить од­ной результирующей силой и парой с моментом . Рассуждая так, что для равновесия этой системы сил необходимо и достаточно, чтобы одновременно было R = 0 и M о = 0. Но векторы и могут обратиться в нуль только тогда, когда равны нулю все их проекции на оси координат, т. е. когда R x = R y = R z = 0 и M x = M y = M z = 0 или, когда дей­ствующие силы удовлетворяют условиям

ΣX i = 0; ΣM x (P i ) = 0;

ΣY i = 0; ΣM y (P i ) = 0;

ΣZ i = 0; ΣM z (P i ) = 0.

Таким образом, для равновесия пространственной системы сил необходимо и достаточно, чтобы суммы проекций всех сил системы на каждую из координатных осей, а также суммы моментов всех сил системы относительно каждой из этих осей равнялись нулю.

В частных случаях системы сходящихся или параллельных сил эти уравнения будут линейно зависимы, и только три уравнения из шести будут линейно независимыми.

Например, уравнения равновесия системы сил, параллельных оси Oz , имеют вид:

ΣZ i = 0;

ΣM x (P i ) = 0;

ΣM y (P i ) = 0.

Задачи на равновесие тела под действием пространст­венной системы сил.

Принцип решения задач этого раздела остается тем же, что и для плоской системы сил. Установив, равновесие, какого тела будет рассматриваться, заменяют наложенные на тело связи их реакциями и составляют условия равновесия этого тела, рассма­тривая его как свободное. Из полученных уравнений определяются искомые величины.



Для получения более простых систем уравнений рекомендуется оси проводить так, чтобы они пересекали больше неизвестных сил или были к ним перпендикулярны (если это только излишне не усложняет вычисления проекций и моментов других сил).

Новым элементом в составлении уравнений является вычисление моментов сил относительно осей координат.

В случаях, когда из общего чертежа трудно усмотреть, чему равен момент данной силы относительно какой-нибудь оси, рекоменду­ется изобразить на вспомогательном чертеже проекцию рассматри­ваемого тела (вместе с силой) на плоскость, перпендикулярную к этой оси.

В тех случаях, когда при вычислении момента возникают затруд­нения в определении проекции силы на соответствующую плоскость или плеча этой проекции, реко­мендуется разложить силу на две взаимно перпендикулярные состав­ляющие (из которых одна парал­лельна какой-нибудь координат­ной оси), а затем воспользоваться теоремой Вариньона.

Пример 5. Рама АВ (рис.45) удерживается в равновесии шарниром А и стержнем ВС . На краю рамы находится груз весом Р . Опреде­лим реакции шарнира и усилие в стержне.

Рис.45

Рассматриваем равновесие рамы вместе с грузом.

Строим расчётную схему, изобразив раму свободным телом и показав все силы, действующие на неё: реакции связей и вес груза Р . Эти силы образуют систему сил, произвольно расположенных на плоскости.

Жела­тельно составить такие уравнения, чтобы в каждом было по одной неиз­вестной силе.

В нашей задаче это точка А , где приложены неизвестные и ; точка С , где пересекаются линии действия неизвестных сил и ; точка D – точка пересечения линий действия сил и . Со­ставим уравнение проекций сил на ось у (на ось х проектировать нельзя, т.к. она перпендикулярна прямой АС ).

И, прежде чем составлять уравнения, сделаем еще одно полезное заме­чание. Если на расчётной схеме имеется сила, расположенная так, что плечо её находится непросто, то при определении момента рекоменду­ется предварительно разложить вектор этой силы на две, более удобно направленные. В данной задаче разложим силу на две: и (рис.37) такие, что модули их

Составляем уравнения:

Из второго уравнения находим

Из третьего

И из первого

Так как получилось S <0, то стержень ВС будет сжат.

Пример 6. Прямоугольная полка весом Р удерживается в гори­зонтальном положении двумя стержнями СЕ и СD , прикреплён­ными к стене в точке Е . Стержни одинаковой длины, AB=2a , EO=a . Определим усилия в стержнях и ре­акции петель А и В .

Рис.46

Рассматриваем равновесие плиты. Строим расчётную схему (рис.46). Реакции петель принято показывать двумя силами перпенди­кулярными оси петли: .

Силы образуют систему сил, произвольно расположенных в про­странстве. Можем составить 6 уравнений. Неизвестных - тоже шесть.

Какие уравнения составлять – надо подумать. Желательно такие, чтобы они были попроще и чтобы в них было поменьше неизвестных.

Составим такие уравнения:

Из уравнения (1) получим: S 1 =S 2 . Тогда из (4): .

Из (3): Y A =Y B и, по (5), . Значит Из уравнения (6), т.к. S 1 =S 2 , следует Z A =Z B . Тогда по (2) Z A =Z B =P/4.

Из треугольника , где , следует ,

Поэтому Y A =Y B =0,25P, Z A =Z B 0,25P.

Для проверки решения можно составить ещё одно уравнение и по­смотреть, удовлетворяется ли оно при найденных значениях реакций:

Задача решена правильно.

Вопросы для самопроверки

Какая конструкция называется фермой?

Назовите основные составные элементы фермы.

Какой стержень фермы называется нулевым?

Сформулируйте леммы, определяющие нулевой стержень фермы.

В чем заключается сущность способа вырезания узлов?

На основании каких соображений без вычислений можно определить стержни пространственных ферм, в которых при заданной нагрузке усилия равны нулю?

В чем заключается сущность способа Риттера?

Каково соотношение между нормальной реакцией поверхности и силой нормального давления?

Что называется силой трения?

Запишите закон Амонтона-Кулона.

Сформулируйте основной закон трения. Что такое коэффициент трения, угол трения и от чего зависит их значение?

Брус находится в равновесии, опираясь на гладкую вертикальную стену и шероховатый горизонтальный пол; центр тяжести бруса находится в его середине. Можно ли определить направление полной реакции пола?

Назовите размерность коэффициента трения скольжения.

Что такое предельная сила трения скольжения.

Что характеризует конус трения?

Назовите причину появления момента трения качения.

Какова размерность коэффициента трения качения?

Приведите примеры устройств, в которых возникает трение верчения.

В чем заключается разница между силой сцепления и силой трения?

Что называют конусом сцепления?

Каковы возможные направления реакции шероховатой поверхности?

Что представляет собой область равновесия и каковы условия равновесия сил, приложенных к бруску, опирающемуся на две шероховатые поверхности?

Что называется моментом силы относительно точки? Какова размерность этой величины?

Как вычислить модуль момента силы относительно точки?

Сформулируйте теорему о моменте равнодействующей системы сходящихся сил.

Что называется моментом силы относительно оси?

Запишите формулу, связывающую момент силы относительно точки с моментом этой же силы относительно оси, проходящей через эту точку.

Как определяется момент силы относительно оси?

Почему при определении момента силы относительно оси нужно обязательно спроецировать силу на плоскость, перпендикулярную оси?

Каким образом нужно располо­жить ось, чтобы момент данной силы относительно этой оси равнялся нулю?

Приведите формулы для вычисления моментов силы относительно координатных осей.

Как направлен вектор момента силы относительно относительно точки?

Как определяется на плоскости момент силы относительно точки?

Какой площадью можно определить числовое значение момента силы относительно данной точки?

Изменяется ли момент силы относительно данной точки при переносе силы вдоль линии ее действия?

В каком случае момент силы относительно данной точки равен нулю?

Определите геометрическое место точек пространства, относительно которых моменты данной силы:

а) геометрически равны;

б) равны по модулю.

Как определяются числовое значение и знак момента силы относительно оси?

При каких условиях момент силы относительно оси равен нулю?

При каком направлении силы, приложенной к заданной точке, ее момент относительно данной оси наибольший?

Какая зависимость существует между моментом силы относительно точки и моментом той же силы относительно оси, проходящей через эту точку?

При каких условиях модуль момента силы относительно точки равен моменту той же силы относительно оси, проходящей через эту точку?

Каковы аналитические выражения моментов силы относительно координатных осей?

Чему равны главные моменты системы сил, произвольно расположенных в пространстве, относительно точки и относительно оси, проходящей через эту точку? Какова зависимость между ними?

Чему равен главный момент системы сил, лежащих в одной плоскости, относительно любой точки этой плоскости?

Чему равен главный момент сил, составляющих пару, относительно любой точки в пространстве?

Что называется главным моментом системы сил относительно заданного полюса?

Как формулируется лемма о параллельном переносе силы?

Сформулируйте теорему о приведении произвольной системы сил к главному вектору и главному моменту.

Запишите формулы для вычисления проекций главного момента на координатные оси.

Приведите векторную запись условий равновесия произвольной системы сил.

Запишите условия равновесия произвольной системы сил в проекциях на прямоугольные координатные оси.

Сколько независимых скалярных уравнений равновесия можно записать для пространственной системы параллельных сил?

Запишите уравнения равновесия для произвольной плоской системы сил.

При каком условии три непараллельные силы, приложенные к твердому телу, уравновешиваются?

Каково условие равновесия трех параллельных сил, приложенных к твердому телу?

Каковы возможные случаи приведения произвольно расположенных и параллельных сил в пространстве?

К какому простейшему виду можно привести систему сил, если известно, что главный момент этих сил относительно различных точек пространства:

а) имеет одно и то же значение не равное нулю;

б) равен нулю;

в) имеет различные значения и перпендикулярен главному вектору;

г) имеет различные значения и неперпендикулярен главному вектору.

Каковы условия и уравнения равновесия пространственной системы сходящихся, параллельных и произвольно расположенных сил и чем они отличаются от условий и уравнений равновесия такого же вида сил на плоскости?

Какие уравнения и сколько их можно составить для уравновешенной пространственной системы сходящихся сил?

Запишите систему уравнений равновесия пространственной системы сил?

Каковы геометрические и аналитические условия приведения пространственной системы сил к равнодействующей?

Сформулируйте теорему о моменте равнодействующей пространственной системы сил относительно точки и оси.

Составьте уравнения линии действия равнодействующей.

Какую прямую в пространстве называют центральной осью системы сил?

Выведите уравнения центральной оси системы сил?

Покажите, что две скрещивающиеся силы можно привести к силовому винту.

По какой формуле вычисляют наименьший главный момент заданной системы сил?

Запишите формулы для расчета главного вектора пространственной системы сходящихся сил?

Запишите формулы для расчета главного вектора пространственной системы произвольно расположенных сил?

Запишите формулу для расчета главного момента пространственной системы сил?

Какова зависимость главного момента системы сил в пространстве от расстояния центра приведения до центральной оси этой системы сил?

Относительно каких точек пространства главные моменты заданной системы сил имеют один и тот же модуль и составляют с главным вектором один и тот же угол?

Относительно каких точек пространства главные моменты системы сил геометрически равны между собой?

Каковы инварианты системы сил?

Каким условиям удовлетворяют задаваемые силы, приложенные к твердому телу с одной и двумя закрепленными точками, находящемуся в покое?

Будет ли в равновесии плоская система сил, для которой алгебраические суммы моментов относительно трех точек, расположенных на одной прямой, равны нулю?

Пусть для плоской системы сил суммы моментов относительно двух точек равны нулю. При каких дополнительных условиях система будет в равновесии?

Сформулируйте необходимые и достаточные условия равновесия плоской системы параллельных сил.

Что такое моментная точка?

Какие уравнения (и сколько) можно составить для уравновешенной произвольной плоской системы сил?

Какие уравнения и сколько их можно составить для уравновешенной пространственной системы параллельных сил?

Какие уравнения и сколько их можно составить для уравновешенной произвольной пространственной системы сил?

Как формулируется план решения задач статики на равновесие сил?

Совмещаем начало координат с точкой пересечения линий дей­ствия сил системы. Проецируем все силы на оси координат и сум­мируем соответствующие проекции (рис. 7.4). Получим проекции равнодействующей на оси координат:

Модуль равнодействующей системы сходящихся сил определим по формуле

Направление вектора равнодействующей определяется углами

Произвольная пространственная система сил

Приведение произвольной пространственной системы сил к центру О.

Дана пространственная система сил (рис. 7.5, а). Приведем ее к центру О.

Силы необходимо параллельно перемещать, при этом образуется система пар сил. Момент каждой из этих пар равен произведению модуля силы на расстояние до центра приведения.

В центре приведения возникает пучок сил, который может быть заменен суммарной силой (главный вектор) F ГЛ (рис. 7.5, б).

Моменты пар сил можно сложить, получив суммарный момент системы М гл (главный момент).

Таким образом, произвольная пространственная система сил приводится к главному вектору и главному моменту.

Главный вектор принято раскладывать на три составляющие, направленные вдоль осей координат (рис. 7.5, в).

Обычно суммарный момент раскладывают на составляющие: три момента относительно осей координат.

Абсолютное значение главного вектора (рис. 7.5б) равно

Абсолютное значение главного момента определяется по форму­ле.

Уравнения равновесия пространственной системы сил

При равновесии F гл = 0; М гл = 0. Получаем шесть уравнений равновесия:

Шесть уравнений равновесия пространственной системы сил со­ответствуют шести независимым возможным перемещениям тела в пространстве: трем перемещениям вдоль координатных осей и трем вращениям вокруг этих осей.

Примеры решения задач

Пример 1. На тело в форме куба с ребром а = 10 см действуют три силы (рис. 7.6). Определить моменты сил относительно осей координат, совпадающих с ребрами куба.

Решение

1. Моменты сил относительно оси Ох:

2. Моменты сил относительно оси Оу.

Пример 2. На горизонтальном валу закреплены два колеса, г 1 = 0,4 м; г 2 = 0,8 м. Остальные размеры - на рис. 7.7. К коле­су 1 приложена сила F 1 , к колесу 2 - силы F 2 = 12 кН, F 3 = 4кН.

Определить силу F 1 и реакции в шарнирах А и В в состоянии равновесия.

Напомним:

1. При равновесии выполняются шесть урав­нений равновесия.

Уравнения моментов следует составлять относи­тельно опор А и В.

2. Силы F 2 \\Ox ; F 2 \\Oy; F 3 \\Oy.

Моменты этих сил относительно соответству­ющих осей равны нулю.

3. Расчет следует завершить проверкой, использовав дополнительные уравнения равновесия.

Решение

1. Определяем силу F\, составив уравнение моментов сил отно­сительно оси Oz:

2. Определяем реакции в опоре А. На опоре действуют две со­ставляющие реакции (Y A ; X A ).

Составляем уравнение моментов сил относительно оси Ох" (в опоре В).

Поворот вокруг оси Ох" не происходит:

Знак «минус» означает, что реакция направлена в противополож­ную сторону.

Поворот вокруг оси Оу" не происходит, составляем уравнение моментов сил относительно оси Оу" (в опоре В):

3.Определяем реакции в опоре В. На опоре действуют две со­ставляющие реакции (X B , Y B ). Составляем уравнение моментов сил относительно оси Ох (опора А):

Составляем уравнение моментов относительно оси Оу (опора А):

4.Проверка. Используем уравнения проекций:

Расчёт выполнен верно.

Пример 3. Определить численное значение силы P 1 , при котором вал ВС (рис. 1.21, а) будет находиться в равновесии. При найденном значении силы Р 1 определить опорные реакции.

Действующие на зубчатые колеса силы Р и Р 1 направлены по касательным к на­чальным окружно­стям колес; силы Т и Т 1 - по радиусам колес; силы А 1 па­раллельны оси вала. Т = 0,36Р, 7Т 1 = Р 1 ; А 1 = 0,12P 1 .

Решение

Опоры вала, изображенные на рис. 1.21, а, надо рассматривать как пространственные шарнирные опоры, препятствующие линейным перемеще­ниям в направлениях осей и и v (выбранная система координат показана на рис. 1.21, б ).

Освобождаем вал от связей и заменяем их действие реакциями V В, Н В, V C , Н С (рис. 1.21, б ). Получили прост­ранственную систему сил, для которой составляем урав­нения равновесия, пользуясь выбранной системой коор­динат (рис. 1.21,6):

где А 1 *1,25D/2 - момент относительно оси и силы A 1 , приложенной к правому зубчатому колесу.

Моменты относительно оси и сил Т 1 и А 1 (приложен­ных к среднему зубчатому колесу), Р 1 (приложенной к правому зубчатому колесу) и Р равны нулю, так как силы Р, T 1 , Р 1 параллельны оси и, а сила А 1 пересекает ось и.

откуда V С = 0,37P;

откуда V B =0,37P.

следовательно, реакции V B и V С определены верно;

где А 1 * 1,25D/2 - момент относительно оси v силы А 1 , приложенной к среднему зубчатому колесу.

Моменты относительно оси v сил Т, Р 1 (приложенной к среднему зубчатому колесу), А 1 и Т 1 (приложенных к правому зубчатому колесу) равны нулю, так как силы Т, Р 1 , Т 1 параллельны оси v, сила А 1 пересекает ось v.

откуда H C = 0,81Р;

откуда H С = 1,274Р

Составим проверочное уравнение:

следовательно, реакции Н В и Н С определены верно.

В заключение отметим, что опорные реакции получи­лись со знаком плюс. Это указывает на то, что выбран­ные направления V B , Н В, V C и Н С совпадают с действи­тельными направлениями реакций связей.

Пример 4. Сила давления шатуна парового дви­гателя Р = 25 кН передается на середину шейки колен­чатого вала в точке D под углом α = 30° к горизонту при вертикальном расположении щек колена (рис. 1.22). На конец вала насажен шкив ременной передачи. Натя­жение ведущей ветви ремня в два раза больше, чем ведомой, т.е. S 1 = 2S 2 . Сила тяжести маховика G = 10 кН.

Определить натяжения ветвей ременной передачи и реакции подшипников А и В, пренебрегая массой вала.

Решение

Рассматриваем равновесие горизонтального коленчатого вала со шкивом. Прикладываем в соответ­ствии с условием задачи заданные силы Р, S 1 , S 2 иG . Освобождаем вал от опорных закреплений и заменяем их действие реакциями V A , Н А, V B и Н В. Координатные оси выбираем так, как показано на рис. 1.22. В шарнирах А и В не возникает реакций вдоль оси w, так как натя­жение ветвей ремня и все остальные силы действуют в плоскостях, перпендикулярных этой оси.

Составим уравнения равновесия:

Кроме того, по условию задачи имеем еще одно уравне­ние

Таким образом, здесь имеется шесть неизвестных уси­лий S 1, S 2 , Н А, V A , Н В иV B и шесть связывающих их уравнений.

Уравнение проекций на ось w в рассматриваемом примере обращается в тождество 0 = 0, так как все силы лежат в плоскостях, перпендикулярных оси w.

Подставляя в уравнения равновесия S 1 =2S 2 и решая их, находим:

Значение реакции Н В получилось со знаком минус. Это значит, что в действительности ее направление про­тивоположно принятому на рис. 1.22.

Контрольные вопросы и задания

1. Запишите формулы для расчета главного вектора пространственной системы сходящихся сил.

2. Запишите формулу для расчета главного вектора простран­ственной системы произвольно расположенных сил.

3. Запишите формулу для расчета главного момента простран­ственной системы сил.

4. Запишите систему уравнений равновесия пространственной системы сил.

5. Какое из уравнений равновесия нужно использовать для опре­деления реакции стержня R 1 (рис. 7.8)?

6. Определите главный момент системы сил (рис. 7.9). Точка приведения - начало координат. Координатные оси совпадают с реб­рами куба, ребро куба равно 20 см;F 1 - 20кН;F 2 - 30кН.

7. Определите реакцию Хв (рис. 7.10). Вертикальная ось со шки­вом нагружена двумя горизонтальными силами. Силы F 1 и F 2 па­раллельны осиОх. АО = 0,3 м; ОВ = 0,5 м; F 1 = 2кН; F 2 = 3,5 кН.



Рекомендация. Составить уравнение моментов относительно оси Оу" в точке А.

8. Ответьте на вопросы тестового задания.

Т. о., для равновесия произвольной пространственной системы сил необходимо и достаточно, чтобы алгебраическая сумма проекций всех этих сил на каждую из трех любым образом выбранных координатных осей равнялась нулю и чтобы алгебраическая сумма их моментов относительно каждой из этих осей также равнялась нулю.

Условия (1.33) называются условиями равновесия произвольной пространственной системы сил в аналитической форме .

Условия равновесия пространственной системы параллельных сил. Если линии действия всех сил данной системы сил расположены в разных плоскостях и параллельны между собой, то такая система сил называется пространственной системой параллельных сил .

Пользуясь условиями равновесия (1.33) произвольной пространственной системы сил, можно найти условия равновесия пространственной системы параллельных сил. (Выведенные нами ранее условия равновесия для плоской и пространственной систем сходящихся сил, произвольной плоской системы сил и плоской системы параллельных сил также можно было бы получить, пользуясь условиями равновесия (1.33) произвольной пространственной системы сил).

Пусть на твердое тело действует пространственная система параллельных сил (рисунок 1.26). Так как выбор координатных осей произволен, то можно выбрать координатные оси так, чтобы ось z была параллельна силам. При таком выборе координатных осей проекции каждой из сил на оси х и у и их моменты относительно оси z будут равны нулю, и, следовательно, равенства , и удовлетворяются независимо от того, находится ли данная система сил в равновесии или нет, а поэтому перестают быть условиями равновесия. Поэтому система (1.33) даст только три условия равновесия:



Следовательно, для равновесия пространственной системы параллельных сил необходимо и достаточно, чтобы алгебраическая сумма проекций всех сил на ось, параллельную этим силам, равнялась нулю и чтобы алгебраическая сумма их моментов относительно каждой из двух координатных осей, перпендикулярных к этим силам, также равнялась нулю .

1. Выбрать тело (или точку), равновесие которого должно быть рассмотрено в данной задаче.

2. Освободить выбранное тело от связей и изобразить (расставить) все действующие на это тело (и только на это тело) активные силы и силы реакций отброшенных связей . Тело, освобожденное от связей, с приложенной к нему системой активных сил и сил реакций, следует изображать отдельно.

3. Составить уравнения равновесия . Для составления уравнений равновесия необходимо сначала выбрать оси координат. Этот выбор можно производить произвольно, но полученные уравнения равновесия будут решаться проще, если одну из осей направить перпендикулярно к линии действия какой-либо неизвестной силы реакции. Решение полученных уравнений равновесия следует, как правило, проводить до конца в общем виде (алгебраически). Тогда для искомых величин будут получаться формулы, позволяющие проанализировать найденные результаты; численные значения найденных величин подставляются только в окончательные формулы. Уравнения равновесия составляются при аналитическом методе решения задач на равновесие системы сходящихся сил. Однако, если число сходящихся сил, равновесие которых рассматривается, равно трем, то удобно применить геометрический метод решения этих задач. Решение в данном случае сводится к тому, что вместо уравнений равновесия всех действующих сил (активных и реакций связей) строится силовой треугольник, который на основании геометрического условия равновесия должен быть замкнут (начинать построение этого треугольника следует с заданной силы). Решая силовой треугольник, находим искомые величины.

Динамика

Для понимания раздела динамики необходимо знать следующие сведения. Из математики – скалярное произведение двух векторов, дифференциальные уравнения. Из физики – законы сохранения энергии, количества движения. Теория колебаний. Рекомендуется повторить эти темы.


Условие равновесия пространственной си­стемы сходящихся сил : алгебраическая сум­ма проекций всех сил на три взаимно перпендикулярные оси координат должны быть равны нулю, т.е.

Для того чтобы найти момент силы относительно оси z, надо спроектировать силу на плоскость Н перпендикулярную оси z (рис. 12), затем найти момент проекции F н относительно точки О, которая является точкой пересечения плоскости Н сосью z. Момент проекции F н и будет являться моментом силы относительно оси z:

Пространственной системой произвольно расположенных сил называется система сил, линии действия которых не лежат в одной плоскости и не пересекаются в одной точке. Равнодействующая такой системы сил также равна геометрической сумме этих сил, но изображается диагональю сложных объемных фигур (тетраэдр, октаэдр и т.д.).

Условие равновесия пространственной сис­темы произвольно расположенных сил: алгебраическая сумма проекций всех сил на три взаимно перпендикулярные оси ко­ординат должна быть равна нулю и алгебраическая сумма моментов всех сил относительно тех же осей координат должна быть равна нулю, т.е.

Трение

Трением называется сопротивление движению тела. Сила, с которой тело сопротивляется движению, называется силой трения.

Сила трения всегда направлена в сторону, противоположную дви­жению. Сила трения зависит от материала трущихся тел, чистоты обработки и наличия смазки и не зависит от величины трущихся поверхностей.

Трение бывает: сухое, полужидкостное, жидкостное.

Различают трение покоя, движения, скольжения и качения. Сила трения покоя больше, чем сила трения движения.



Сила трения равна произведению силы нормального давления на коэф­фициент трения скольжения (рис. 14):

F тр =R n ƒ,

где R n = mg cos a - сила нормального давления;

ƒ - коэффициент трения скольжения.

Коэффициентом трения скольжения называется от­ношение силы трения к силе нормального давления:

Материалы, обладающие очень малым трением, называются антифрикционными (баббит, бронза, графит).Применяются для изготовления подшипников и др.

Материалы, обладающие большим трением, на­зываются фрикционными (специальные пластмассы с применением асбеста и меди). Применяются для накладок тормозных колодок, для накладок дисков сцепления.

При смазке поверхности скольжения тело начи­нает двигаться с меньшим трением.

Разложим силу тяжести G на составляющие G ’ и G " (рис.15)

Составим уравнение равновесия:

где h - расстояние от поверхности до линии действия силы;

k - коэффициент трения качения. Он равен отрезку ОС(см. рис16)

F дв = F тр,

F тр =R п k/h

Если h = d,

F тр =R п k/d

если h = г,

F тр =R п k/d

Как было выяснено в § 4.4, необходимые и достаточные условия равновесия пространственной системы сил, приложенных к твердому телу, можно записать в виде трех уравнений проекций (4.16) и трех моментов (4.17):

, , . (7.14)

Если тело полностью закреплено, то действующие на него силы находятся в равновесии и уравнения (7.13) и (7.14) служат для определения опорных реакций. Конечно, могут встретиться случаи, когда этих уравнений недостаточно для определения опорных реакций; такие статически неопределимые системы мы рассматривать не будем.

Для пространственной системы параллельных сил уравнения равновесия принимают вид (§ 4.4[‡]):

, , . (7.15)

Рассмотрим теперь случаи, когда тело закреплено лишь частично, т.е. связи, которые наложены на тело, не гарантируют равновесия тела. Можно указать четыре частных случая.

1. Твердое тело имеет одну неподвижную точку. Иначе говоря, оно прикреплено к неподвижной точке при помощи идеального сферического шарнира.

Поместим в эту точку начало неподвижной системы координат. Действие связи в точке А заменим реакцией; так как она неизвестна по модулю и по направлению, то мы ее представим в виде трех неизвестных составляющих , , , направленных соответственно вдоль осей , , .

Уравнения равновесия (7.13) и (7.14) в этом случае запишутся в виде:

1) ,

2) ,

3) ,

4) ,

5) ,

6) . (7.16)

Последние три уравнения не содержат составляющих реакции, так как линия действия этой силы проходит через точку А . Следовательно, эти уравнения устанавливают зависимости между активными силами, необходимыми для равновесия тела, причем три первых уравнения могут быть использованы для определения составляющих реакции.

Таким образом, условием равновесия твердого тела, имеющего одну неподвижную точку, является равенство нулю каждой из алгебраических сумм моментов всех активных сил системы относительно трех осей, пересекающихся в неподвижной точке тела .

2. Тело имеет две неподвижные точки. Это, например, будет иметь место, если оно прикреплено к двум неподвижным точкам при помощи шарниров.



Выберем начало координат в точке А и направим ось вдоль линии, проходящей через точки А и В . Заменим действие связей реакциями, направив составляющие реакции вдоль координатных осей. Обозначим расстояние между точками А и В через а ; тогда уравнения равновесия (7.13) и (7.14) запишутся в следующем виде:

1) ,

2) ,

3) ,

4) ,

5) ,

6) . (7.17)

Последнее уравнение не содержит сил реакции и устанавливает связь между активными силами, необходимую для равновесия тела. Следовательно, условием равновесия твердого тела, имеющего две неподвижные точки, является равенство нулю алгебраической суммы моментов всех активных сил, приложенных к телу, относительно оси, проходящей через неподвижные точки . Первые пять уравнений служат для определения неизвестных составляющих реакций , , , , , .

Заметим, что составляющие и не могут быть определены в отдельности. Из третьего уравнения определяется только сумма + и, следовательно, задача в отношении каждого из этих неизвестных для твердого тела является статически неопределимой. Однако, если в точке В находится не сферический, а цилиндрический шарнир (т.е. подшипник), не препятствующий продольному скольжению тела вдоль оси вращения, то и задача становится статически определимой.

Тело имеет неподвижную ось вращения, вдоль которой оно может скользить без трения. Это значит, что в точках А и В находятся цилиндрические шарниры (подшипники), причем составляющие их реакций вдоль оси вращения равны нулю. Следовательно, уравнения равновесия примут вид:

1) ,

2) ,

4) ,

5) ,

6) . (7.18)

Два из уравнений (7.18), а именно, третье и шестое, накладывают ограничения на систему активных сил, а остальные уравнения служат для определения реакций.

Тело опирается в трех точках на гладкую поверхность, причем точки опоры не лежат на одной прямой. Обозначим эти точки через А , В и С и совместим с плоскостью АВС координатную плоскость Аху . Заменив действие связей вертикальными реакциями , и , запишем условия равновесия (7.14) в таком виде:

3) ,

4) ,

5) ,

6) . (7.19)

Третье – пятое уравнения могут служить для определения неизвестных реакций, а первое, второе и шестое уравнения представляют собой условия, связывающие активные силы и необходимые для равновесия тела. Конечно, для равновесия тела необходимо выполнение условий , , , так как в точках опоры могут возникнуть только реакции принятого выше направления.

Если тело опирается на горизонтальную плоскость более чем в трех точках, то задача становится статически неопределимой, так как при этом реакций будет столько, сколько точек, а уравнений для определения реакций останется только три.

Задача 7.3. Найти главный вектор и главный момент системы сил, изображенной на рис. Силы приложены к вершинам куба и направлены вдоль его ребер, причем , . Длина ребра куба равна а .

Проекции главного вектора находим по формулам (4.4):

, , .

Его модуль равен . Направляющие косинусы будут

, ;

, ;

, .

Главный вектор изображен на рис.

,

а модуль главного момента по формуле (4.8)

Теперь определим направляющие косинусы главного момента:

, ;

, .

Главный момент изображен на рис. Угол между векторами и вычисляется по формуле (4.11) и

Границы искомой области найдем из условий:

,

.

Отсюда находим

,

.

На рис. искомая область, построенная при , заштрихована. При вся поверхность пластины будет безопасной.



Похожие статьи