Произведение двух векторов формула. Векторное произведение векторов онлайн

Векторное произведение - это псевдовектор, перпендикулярный плоскости, построенной по двум сомножителям, являющийся результатом бинарной операции «векторное умножение» над векторами в трёхмерном Евклидовом пространстве. Векторное произведение не обладает свойствами коммутативности и ассоциативности (является антикоммутативным) и, в отличие от скалярного произведения векторов, является вектором. Широко используется во многих технических и физических приложениях. Например, момент импульса и сила Лоренца математически записываются в виде векторного произведения. Векторное произведение полезно для «измерения» перпендикулярности векторов - модуль векторного произведения двух векторов равен произведению их модулей, если они перпендикулярны, и уменьшается до нуля, если векторы параллельны либо антипараллельны.

Определить векторное произведение можно по-разному, и теоретически, в пространстве любой размерности n можно вычислить произведение n-1 векторов, получив при этом единственный вектор, перпендикулярный к ним всем. Но если произведение ограничить нетривиальными бинарными произведениями с векторным результатами, то традиционное векторное произведение определено только в трёхмерном и семимерном пространствах. Результат векторного произведения, как и скалярного, зависит от метрики Евклидова пространства.

В отличие от формулы для вычисления по координатам векторов скалярного произведения в трёхмерной прямоугольной системе координат, формула для векторного произведения зависит от ориентации прямоугольной системы координат или, иначе, её «хиральности».

Определение:
Векторным произведением вектора a на вектор b в пространстве R 3 называется вектор c , удовлетворяющий следующим требованиям:
длина вектора c равна произведению длин векторов a и b на синус угла φ между ними:
|c|=|a||b|sin φ;
вектор c ортогонален каждому из векторов a и b;
вектор c направлен так, что тройка векторов abc является правой;
в случае пространства R7 требуется ассоциативность тройки векторов a,b,c.
Обозначение:
c===a × b


Рис. 1. Площадь параллелограмма равна модулю векторного произведения

Геометрические свойства векторного произведения :
Необходимым и достаточным условием коллинеарности двух ненулевых векторов является равенство нулю их векторного произведения.

Модуль векторного произведения равняется площади S параллелограмма, построенного на приведённых к общему началу векторах a и b (см. рис.1).

Если e - единичный вектор, ортогональный векторам a и b и выбранный так, что тройка a,b,e - правая, а S - площадь параллелограмма, построенного на них (приведённых к общему началу), то для векторного произведения справедлива формула:
=S e


Рис.2. Объём параллелепипеда при использовании векторного и скалярного произведения векторов; пунктирные линии показывают проекции вектора c на a × b и вектора a на b × c, первым шагом является нахождение скалярных произведений

Если c - какой-нибудь вектор, π - любая плоскость, содержащая этот вектор, e - единичный вектор, лежащий в плоскости π и ортогональный к c,g - единичный вектор, ортогональный к плоскости π и направленный так, что тройка векторов ecg является правой, то для любого лежащего в плоскости π вектора a справедлива формула:
=Pr e a |c|g
где Pr e a проекция вектора e на a
|c|-модуль вектора с

При использовании векторного и скалярного произведений можно высчитать объём параллелепипеда, построенного на приведённых к общему началу векторах a, b и c . Такое произведение трех векторов называется смешанным.
V=|a (b×c)|
На рисунке показано, что этот объём может быть найден двумя способами: геометрический результат сохраняется даже при замене «скалярного» и «векторного» произведений местами:
V=a×b c=a b×c

Величина векторного произведения зависит от синуса угла между изначальными векторами, поэтому векторное произведение может восприниматься как степень «перпендикулярности» векторов также, как и скалярное произведение может рассматриваться как степень «параллельности». Векторное произведение двух единичных векторов равно 1 (единичному вектору), если изначальные векторы перпендикулярны, и равно 0 (нулевому вектору), если векторы параллельны либо антипараллельны.

Выражение для векторного произведения в декартовых координатах
Если два вектора a и b определены своими прямоугольными декартовыми координатами, а говоря точнее - представлены в ортонормированном базисе
a=(a x ,a y ,a z)
b=(b x ,b y ,b z)
а система координат правая, то их векторное произведение имеет вид
=(a y b z -a z b y ,a z b x -a x b z ,a x b y -a y b x)
Для запоминания этой формулы:
i =∑ε ijk a j b k
где ε ijk - символ Леви-Чивиты.

Мы будем использовать таблицу векторного произведения векторов i,j иk:

если направление кратчайшего пути от первого вектора к второму совпадает с направлением стрелки, то произведение равно третьему вектору, если не совпадает - третий вектор берется со знаком «минус».

Пусть заданы два вектора а=ахi +ayj +azk и b =bxi +byj +bzk . Найдем векторное произведение этих векторов, перемножая их как многочлены (согласно свойств векторного произведения):
Полученную формулу можно записать еще короче:так как правая часть равенства (7.1) соответствует разложению определителя третьего порядка по элементам первой строки.Равенство (7.2) легко запоминается.

7.4. Некоторые приложения векторного произведения

Установление коллинеарности векторов.
Нахождение площади параллелограмма и треугольника

Согласно определению векторного произведения векторов а и b |а хb | = |а| * |b |sing , т. е. S пар = |а х b |. И, значит, DS =1/2|а х b |.

Определение момента силы относительно точки

Пусть в точке А приложена сила F =АВ и пусть О - некоторая точка пространства Из физики известно, что моментом си лы F относительно точки О называется вектор М, который проходит через точку О и:

1) перпендикулярен плоскости, проходящей через точки О, А, В;

2) численно равен произведению силы на плечо 3) образует правую тройку с векторами ОА и A В.

Стало быть, М=ОА х F . Нахождение линейной скорости вращения

Скорость v точки М твердого тела, вращающегося с угловой скоростью w вокруг неподвижной оси, определяется формулой Эйлера v =w хr , где r =ОМ, где О-некоторая неподвижная точка оси (см. рис. 21).

Угол между векторами

Из определения скалярного произведения двух векторов следует, что Если векторы и заданы координатами и , то формула (1.6.3.1) запишется в виде:

Площадь параллелограмма,построенных на векторах

Задачи на измерение длин отрезков, расстояний между точками, площадей поверхностей и объемов тел относятся к важному классу проблем, которые принято называть метрическими. В предыдущем разделе мы познакомились с тем, как использовать векторную алгебру для вычисления длин отрезков и расстояний между точками. Теперь мы собираемся найти способы вычисления площадей и объемов. Векторная алгебра позволяет ставить и решать подобные задачи только для достаточно простых случаев. Для вычисления площадей произвольных поверхностей и объемов произвольных тел требуются методы анализа. Но методы анализа в свою очередь существенным образом опираются на те результаты, которые дает векторная алгебра.

Для решения поставленной задачи, мы избрали достаточно долгий и непростой путь, подсказанный Гильбертом Стренгом , связанный с многочисленными геометрическими преобразованиями и кропотливыми алгебраическими вычислениями. Мы избрали этот путь несмотря на то, что существуют другие подходы, которые быстрее приводят к цели потому, что он показался нам прямым и естественным. Прямой путь в науке не всегда оказывается самым простым. Люди искушенные знают об этом и предпочитают пути окольные, но если не попытаться пройти прямиком, то можно так и остаться в неведении относительно некоторых тонкостей теории.

На избранном нами пути естественным образом появляются такие понятия как ориентация пространства, определитель, векторное и смешанное произведения. Особенно наглядно, как под микроскопом, проявляется геометрический смысл определителя и его свойств. Традиционно понятие определителя вводится в теории систем линейных уравнений, но именно для решения таких систем определитель почти бесполезен. Геометрический же смысл определителя существенен для векторной и тензорной алгебры.

А теперь запасемся терпением и начнем с самых простых и понятных случаев.

1. Векторы ориентированы вдоль координатных осей декартовой системы координат.

Пусть вектор a направлен по оси x, а вектор b вдоль оси y. На рис. 21 показаны четыре различных варианта расположения векторов по отношению к осям координат.

Векторы a и b в координатной форме:Где a и b означают модуль соответствующего вектора, а – знак координаты вектора.

Поскольку векторы ортогональны, то параллелограммы, построенные на них, являются прямоугольниками. Их площади равны просто произведению их сторон. Выразим эти произведения через координаты векторов для всех четырех случаев.

Все четыре формулы для вычисления площади одинаковы за исключением знака. Можно было бы просто закрыть на это глаза и записать, что во всех случаях. Однако более продуктивной оказывается другая возможность: придать знаку какой-то смысл. Посмотрим внимательно на рис. 21. В тех случаях, когда, поворот вектора к вектору осуществляется по часовой стрелке. В тех же случаях, когда мы вынуждены использовать в формуле знак минус, поворот вектора к вектору осуществляется против часовой стрелки. Это наблюдение позволяет связать знак в выражениях для площади с ориентацией плоскости.

Площадь прямоугольника, построенного на векторах aиb, со знаком плюс или минус будем считать ориентированной площадью, при этом знак будем связывать с ориентацией, задаваемой векторами. Для ориентированной площади мы можем записать единую формулу для всех рассмотренных четырех случаев:. Знак "векторной" черты над буквой S вводится для того, чтобы отличить обычную площадь, которая всегда положительна, от ориентированной.

При этом, очевидно, что те же самые векторы, взятые в другом порядке, определяют противоположную ориентацию, поэтому, . Просто площадь будем по-прежнему обозначать буквой S и, следовательно, .

Теперь, когда казалось бы ценой расширения понятия площади, мы получили общее выражение, внимательный читатель скажет, что мы рассмотрели не все возможности. Действительно, кроме четырех вариантов расположения векторов, представленных на рис. 21, имеются еще четыре (рис. 22) Запишем снова векторы и в координатной форме: Выразим площади через координаты векторов. 4. . Знаки в новых выражениях не поменялись, но, к сожалению, поменялась ориентация по отношению к предыдущим четырем случаям. Поэтому для ориентированной площади мы вынуждены записать: . Хотя надежда на гениальную простоту и не оправдалась, но, тем не менее, мы все-таки можем записать общее выражение для всех четырех случаев.

То есть, ориентированная площадь прямоугольника, построенного на векторах, как на сторонах, равна определителю, составленному из координат векторов, как из столбцов.

Мы полагаем, что с теорией определителей читатель знаком, поэтому, мы не останавливаемся подробно на этом понятии. Тем не менее, мы даем соответствующие определения, для того чтобы изменить акценты и показать, что к этому понятию можно прийти из чисто геометрических соображений.Итак, , , , – различные формы обозначения для одного и того же понятия – определителя, составленного из координат векторов, как из столбцов. Равенство может быть принято за его определение для двухмерного случая.

2. Вектор b не параллелен оси x; вектор a/ является произвольным вектором.

Для того чтобы свести этот случай к уже известным, рассмотрим некоторые геометрические преобразования параллелограмма, построенного на векторах и (рис. .смешанные произведения векторов и его свойства

7.1. Определение векторного произведения

Три некомпланарных вектора a , b и с , взятые в указанном порядке, образуют правую тройку, если с конца третьего вектора с кратчайший поворот от первого вектора а ко второму вектору b виден совершающимся против часовой стрелки, и левую, если по часовой (см. рис. 16).

Векторным произведением вектора а на вектор b называется вектор с , который:

1. Перпендикулярен векторам a и b , т. е. с ^ а и с ^ b ;

2. Имеет длину, численно равную площади параллелограмма, построенного на векторах а и b как на сторонах (см. рис. 17), т. е.

3. Векторы a , b и с образуют правую тройку.

Векторное произведение обозначается а х b или [а ,b ]. Из определения векторного произведения непосредственно вытекают следующие соотношения между ортами i , j и k (см. рис. 18):

i х j = k , j х k = i , k х i = j .
Докажем, например, что i хj =k .

1) k ^ i , k ^ j ;

2) |k |=1, но | i x j | = |i | |J | sin(90°)=1;

3) векторы i , j и k образуют правую тройку (см. рис. 16).

7.2. Свойства векторного произведения

1. При перестановке сомножителей векторное произведение меняет знак, т.е. а хb =(b хa ) (см. рис. 19).

Векторы а хb и b ха коллинеарны, имеют одинаковые модули (площадь параллелограмма остается неизменной), но противоположно направлены (тройки а , b , а хb и a , b , b x a противоположной ориентации). Стало быть a xb = -(b xa ).

2. Векторное произведение обладает сочетательным свойством относительно скалярного множителя, т. е. l (а хb ) = (l а ) х b = а х (l b ).

Пусть l >0. Вектор l (а хb ) перпендикулярен векторам а и b . Вектор ( l а )хb также перпендикулярен векторам а и b (векторы а , l а лежат в одной плоскости). Значит, векторы l (а хb ) и ( l а )хb коллинеарны. Очевидно, что и направления их совпадают. Имеют одинаковую длину:

Поэтому l (a хb )= l а хb . Аналогично доказывается при l <0.

3. Два ненулевых вектора а и b коллинеарны тогда и только тогда, когда их векторное произведение равно нулевому вектору, т. е. а ||b <=>а хb =0 .

В частности, i *i =j *j =k *k =0 .

4. Векторное произведение обладает распределительным свойством:

(a +b ) хс = а хс +b хс .

Примем без доказательства.

7.3. Выражение векторного произведения через координаты

Мы будем использовать таблицу векторного произведения векторов i , j и k :

если направление кратчайшего пути от первого вектора к второму совпадает с направлением стрелки, то произведение равно третьему вектору, если не совпадает - третий вектор берется со знаком «минус».

Пусть заданы два вектора а =а х i +a y j +a z k и b =b x i +b y j +b z k . Найдем векторное произведение этих векторов, перемножая их как многочлены (согласно свойств векторного произведения):



Полученную формулу можно записать еще короче:

так как правая часть равенства (7.1) соответствует разложению определителя третьего порядка по элементам первой строки.Равенство (7.2) легко запоминается.

7.4. Некоторые приложения векторного произведения

Установление коллинеарности векторов

Нахождение площади параллелограмма и треугольника

Согласно определению векторного произведения векторов а и b |а хb | = |а | * |b |sin g , т. е. S пар = |а х b |. И, значит, D S =1/2|а х b |.

Определение момента силы относительно точки

Пусть в точке А приложена сила F =АВ и пусть О - некоторая точка пространства (см. рис. 20).

Из физики известно, что моментом си лы F относительно точки О называется вектор М , который проходит через точку О и:

1) перпендикулярен плоскости, проходящей через точки О, А, В;

2) численно равен произведению силы на плечо

3) образует правую тройку с векторами ОА и A В .

Стало быть, М =ОА х F .

Нахождение линейной скорости вращения

Скорость v точки М твердого тела, вращающегося с угловой скоростью w вокруг неподвижной оси, определяется формулой Эйлера v =w хr , где r =ОМ , где О-некоторая неподвижная точка оси (см. рис. 21).

СМЕШАННОЕ ПРОИЗВЕДЕНИЕ ТРЕХ ВЕКТОРОВ И ЕГО СВОЙСТВА

Смешанным произведением трёх векторов называют число, равное . Обозначается . Здесь первые два вектора умножаются векторно и затем полученный вектор умножается скалярно на третий вектор . Очевидно, такое произведение есть некоторое число.

Рассмотрим свойства смешанного произведения.

  1. Геометрический смысл смешанного произведения. Смешанное произведение 3-х векторов с точностью до знака равно объёму параллелепипеда, построенного на этих векторах, как на рёбрах, т.е. .

    Таким образом, и .

    Доказательство . Отложим векторы от общего начала и построим на них параллелепипед. Обозначим и заметим, что . По определению скалярного произведения

    Предполагая, что и обозначив через h высоту параллелепипеда, находим .

    Таким образом, при

    Если же , то и . Следовательно, .

    Объединяя оба эти случая, получаем или .

    Из доказательства этого свойства в частности следует, что если тройка векторов правая, то смешанное произведение , а если – левая, то .

  2. Для любых векторов , , справедливо равенство

    Доказательство этого свойства следует из свойства 1. Действительно, легко показать, что и . Причём знаки "+" и "–" берутся одновременно, т.к. углы между векторами и и и одновременно острые или тупые.

  3. При перестановке любых двух сомножителей смешанное произведение меняет знак.

    Действительно, если рассмотрим смешанное произведение , то, например, или

  4. Смешанное произведение тогда и только тогда, когда один из сомножителей равен нулю или векторы – компланарны.

    Доказательство .

    Т.о., необходимым и достаточным условием компланарности 3-х векторов является равенство нулю их смешанного произведения. Кроме того, отсюда следует, что три вектора образуют базис в пространстве, если .

    Если векторы заданы в координатной форме , то можно показать, что их смешанное произведение находится по формуле:

    .

    Т. о., смешанное произведение равно определителю третьего порядка, у которого в первой строке стоят координаты первого вектора, во второй строке – координаты второго вектора и в третьей строке – третьего вектора.

    Примеры.

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ В ПРОСТРАНСТВЕ

Уравнение F(x, y, z) = 0 определяет в пространстве Oxyz некоторую поверхность, т.е. геометрическое место точек, координаты которых x, y, z удовлетворяют этому уравнению. Это уравнение называется уравнением поверхности, а x, y, z – текущими координатами.

Однако, часто поверхность задаётся не уравнением, а как множество точек пространства, обладающих тем или иным свойством. В этом случае требуется найти уравнение поверхности, исходя из её геометрических свойств.


ПЛОСКОСТЬ.

НОРМАЛЬНЫЙ ВЕКТОР ПЛОСКОСТИ.

УРАВНЕНИЕ ПЛОСКОСТИ, ПРОХОДЯЩЕЙ ЧЕРЕЗ ДАННУЮ ТОЧКУ

Рассмотрим в пространстве произвольную плоскостьσ. Её положение определяется заданием вектора , перпендикулярного этой плоскости, и некоторой фиксированной точки M 0 (x 0 , y 0 , z 0 ), лежащей в плоскости σ.

Вектор перпендикулярный плоскости σ, называется нормальным вектором этой плоскости. Пусть вектор имеет координаты .

Выведем уравнение плоскости σ, проходящей через данную точку M 0 и имеющей нормальный вектор . Для этого возьмём на плоскости σ произвольную точку M(x, y, z) и рассмотрим вектор .

Для любой точки M Î σ вектор .Поэтому их скалярное произведение равно нулю . Это равенство – условие того, что точка M Î σ. Оно справедливо для всех точек этой плоскости и нарушается, как только точка M окажется вне плоскости σ.

Если обозначить через радиус-вектор точки M , – радиус-вектор точкиM 0 , то и уравнение можно записать в виде

Это уравнение называется векторным уравнением плоскости. Запишем его в координатной форме. Так как , то

Итак, мы получили уравнение плоскости, проходящей через данную точку. Таким образом, для того чтобы составить уравнение плоскости, нужно знать координаты нормального вектора и координаты некоторой точки, лежащей на плоскости.

Заметим, что уравнение плоскости является уравнением 1-ой степени относительно текущих координат x, y и z .

Примеры.

ОБЩЕЕ УРАВНЕНИЕ ПЛОСКОСТИ

Можно показать, что любое уравнение первой степени относительно декартовых координат x, y, z представляет собой уравнение некоторой плоскости. Это уравнение записывается в виде:

Ax+By+Cz+D =0

и называется общим уравнением плоскости, причём координаты A, B, C здесь являются координатами нормального вектора плоскости.

Рассмотрим частные случаи общего уравнения. Выясним, как располагается плоскость относительно системы координат, если один или несколько коэффициентов уравнения обращаются в ноль.

A – это длина отрезка, отсекаемого плоскостью на оси Ox . Аналогично, можно показать, что b и c – длины отрезков, отсекаемых рассматриваемой плоскостью на осях Oy и Oz .

Уравнением плоскости в отрезках удобно пользоваться для построения плоскостей.



Похожие статьи