Примеры. Определение бесконечно большой последовательности Определение бесконечно малой

Бесконечно малые функции

Функцию %%f(x)%% называют бесконечно малой (б.м.) при %%x \to a \in \overline{\mathbb{R}}%%, если при этом стремлении аргумента предел функции равен нулю.

Понятие б.м. функции неразрывно связано с указанием об изменении ее аргумента. Можно говорить о б.м. функции при %%a \to a + 0%% и при %%a \to a - 0%%. Обычно б.м. функции обозначают первыми буквами греческого алфавита %%\alpha, \beta, \gamma, \ldots%%

Примеры

  1. Функция %%f(x) = x%% является б.м. при %%x \to 0%%, поскольку ее предел в точке %%a = 0%% равен нулю. Согласно теореме о связи двустороннего предела с односторонними эта функция — б.м. как при %%x \to +0%%, так и при %%x \to -0%%.
  2. Функция %%f(x) = 1/{x^2}%% — б.м. при %%x \to \infty%% (а также при %%x \to +\infty%% и при %%x \to -\infty%%).

Отличное от нуля постоянное число, сколь бы оно ни было мало по абсолютному значению, не является б.м. функцией. Для постоянных чисел исключение составляет лишь нуль, поскольку функция %%f(x) \equiv 0%% имеет нулевой предел.

Теорема

Функция %%f(x)%% имеет в точке %%a \in \overline{\mathbb{R}}%% расширенной числовой прямой конечный предел, равный числу %%b%%, тогда и только тогда, когда эта функция равна сумме этого числа %%b%% и б.м. функции %%\alpha(x)%% при %%x \to a%%, или $$ \exists~\lim\limits_{x \to a}{f(x)} = b \in \mathbb{R} \Leftrightarrow \left(f(x) = b + \alpha(x)\right) \land \left(\lim\limits_{x \to a}{\alpha(x) = 0}\right). $$

Свойства бесконечно малых функций

По правилам предельного перехода при %%c_k = 1~ \forall k = \overline{1, m}, m \in \mathbb{N}%%, следуют утверждения:

  1. Сумма конечного числа б.м. функций при %%x \to a%% есть б.м. при %%x \to a%%.
  2. Произведение любого числа б.м. функций при %%x \to a%% есть б.м. при %%x \to a%%.
  3. Произведение б.м. функций при %%x \to a%% и функции, ограниченной в некоторой проколотой окрестности %%\stackrel{\circ}{\text{U}}(a)%% точки а, есть б.м. при %%x \to a%% функция.

    Ясно, что произведение постоянной функции и б.м. при %%x \to a%% есть б.м. функция при %%x \to a%%.

Эквивалентные бесконечно малые функции

Бесконечно малые функции %%\alpha(x), \beta(x)%% при %%x \to a%% называются эквивалентными и пишутся %%\alpha(x) \sim \beta(x)%%, если

$$ \lim\limits_{x \to a}{\frac{\alpha(x)}{\beta(x)}} = \lim\limits_{x \to a}{\frac{\beta(x)}{\alpha(x)}} = 1. $$

Теормема о замене б.м. функций эквивалентными

Пусть %%\alpha(x), \alpha_1(x), \beta(x), \beta_1(x)%% — б.м. функции при %%x \to a%%, причем %%\alpha(x) \sim \alpha_1(x); \beta(x) \sim \beta_1(x)%%, тогда $$ \lim\limits_{x \to a}{\frac{\alpha(x)}{\beta(x)}} = \lim\limits_{x \to a}{\frac{\alpha_1(x)}{\beta_1(x)}}. $$

Эквивалентные б.м. функции.

Пусть %%\alpha(x)%% — б.м. функция при %%x \to a%%, тогда

  1. %%\sin(\alpha(x)) \sim \alpha(x)%%
  2. %%\displaystyle 1 - \cos(\alpha(x)) \sim \frac{\alpha^2(x)}{2}%%
  3. %%\tan \alpha(x) \sim \alpha(x)%%
  4. %%\arcsin\alpha(x) \sim \alpha(x)%%
  5. %%\arctan\alpha(x) \sim \alpha(x)%%
  6. %%\ln(1 + \alpha(x)) \sim \alpha(x)%%
  7. %%\displaystyle\sqrt[n]{1 + \alpha(x)} - 1 \sim \frac{\alpha(x)}{n}%%
  8. %%\displaystyle a^{\alpha(x)} - 1 \sim \alpha(x) \ln(a)%%

Пример

$$ \begin{array}{ll} \lim\limits_{x \to 0}{ \frac{\ln\cos x}{\sqrt{1 + x^2} - 1}} & = \lim\limits_{x \to 0}{\frac{\ln(1 + (\cos x - 1))}{\frac{x^2}{4}}} = \\ & = \lim\limits_{x \to 0}{\frac{4(\cos x - 1)}{x^2}} = \\ & = \lim\limits_{x \to 0}{-\frac{4 x^2}{2 x^2}} = -2 \end{array} $$

Бесконечно большие функции

Функцию %%f(x)%% называют бесконечно большой (б.б.) при %%x \to a \in \overline{\mathbb{R}}%%, если при этом стремлении аргумента функция имеет бесконечный предел.

Подобно б.м. функциям понятие б.б. функции неразрывно связано с указанием об изменении ее аргумента. Можно говорить о б.б. функции при %%x \to a + 0%% и %%x \to a - 0%%. Термин “бесконечно большая” говорит не об абсолютном значении функции, а о характере его изменения в окрестности рассматриваемой точки. Никакое постоянное число, как бы велико оно ни было по абсолютному значению, не является бесконечно большим.

Примеры

  1. Функция %%f(x) = 1/x%% — б.б. при %%x \to 0%%.
  2. Функция %%f(x) = x%% — б.б. при %%x \to \infty%%.

Если выполнены условия определений $$ \begin{array}{l} \lim\limits_{x \to a}{f(x)} = +\infty, \\ \lim\limits_{x \to a}{f(x)} = -\infty, \end{array} $$

то говорят о положительной или отрицательной б.б. при %%a%% функции.

Пример

Функция %%1/{x^2}%% — положительная б.б. при %%x \to 0%%.

Связь между б.б. и б.м. функциями

Если %%f(x)%% — б.б. при %%x \to a%% функция, то %%1/f(x)%% — б.м.

при %%x \to a%%. Если %%\alpha(x)%% — б.м. при %%x \to a%% функция, отличная от нуля в некоторой проколотой окрестности точки %%a%%, то %%1/\alpha(x)%% — б.б. при %%x \to a%%.

Свойства бесконечно больших функций

Приведем несколько свойств б.б. функций. Эти свойства непосредственно следуют из определения б.б. функции и свойств функций, имеющих конечные пределы, а также из теоремы о связи между б.б. и б.м. функциями.

  1. Произведение конечного числа б.б. функций при %%x \to a%% есть б.б. функция при %%x \to a%%. Действительно, если %%f_k(x), k = \overline{1, n}%% — б.б. функции при %%x \to a%%, то в некоторой проколотой окрестности точки %%a%% %%f_k(x) \ne 0%%, и по теореме о связи б.б. и б.м. функций %%1/f_k(x)%% — б.м. функция при %%x \to a%%. Получается %%\displaystyle\prod^{n}_{k = 1} 1/f_k(x)%% — б.м функция при %%x \to a%%, а %%\displaystyle\prod^{n}_{k = 1}f_k(x)%% — б.б. функция при %%x \to a%%.
  2. Произведение б.б. функции при %%x \to a%% и функции, которая в некоторой проколотой окрестности точки %%a%% по абсолютному значению больше положительной постоянной, есть б.б. функция при %%x \to a%%. В частности, произведение б.б. функции при %%x \to a%% и функции, имеющей в точке %%a%% конечный ненулевой предел, будет б.б. функцией при %%x \to a%%.
  3. Сумма ограниченной в некоторой проколотой окрестности точки %%a%% функции и б.б. функции при %%x \to a%% есть б.б. функция при %%x \to a%%.

    Например, функции %%x - \sin x%% и %%x + \cos x%% — б.б. при %%x \to \infty%%.

  4. Сумма двух б.б. функций при %%x \to a%% есть неопределенность. В зависимости от знака слагаемых характер изменения такой суммы может быть самым различным.

    Пример

    Пусть даны функции %%f(x)= x, g(x) = 2x, h(x) = -x, v(x) = x + \sin x%% — б.б. функции при %%x \to \infty%%. Тогда:

    • %%f(x) + g(x) = 3x%% — б.б. функция при %%x \to \infty%%;
    • %%f(x) + h(x) = 0%% — б.м. функция при %%x \to \infty%%;
    • %%h(x) + v(x) = \sin x%% не имет предела при %%x \to \infty%%.

Понятие бесконечно малых и бесконечно больших величин играет важную роль в математическом анализе. Многие задачи просто и легко решаются используя понятия бесконечно больших и малых величин.

Бесконечно малые .

Переменная называется бесконечно малой, если для любогосуществует такое значение, что каждое следующии за ним значениебудет по абсолютной величине меньше.

Если -бесконечно малая то говорят, что стремится к нулю, и пишут:.

Бесконечно большие .

Переменная x называется бесконечно большой , если для всякого положительного числа c существует такое значение , что каждое следующее за нимx будет по абсолютной величине больше . Пишут:

Величина, обратная к бесконечно большой , есть величина бесконечно малая , и обратно.

10. Свойства пределов функции

1) Предел постоянной величины

Предел постоянной величины равен самой постоянной величине:

2) Предел суммы

Предел суммы двух функций равен сумме пределов этих функций:

Аналогично предел разности двух функций равен разности пределов этих функций.

Расширенное свойство предела суммы:

Предел суммы нескольких функций равен сумме пределов этих функций:

Аналогично предел разности нескольких функций равен разности пределов этих функций.

3) Предел произведения функции на постоянную величину

Постоянный коэффициент можно выносить за знак предела:

4) Предел произведения

Предел произведения двух функций равен произведению пределов этих функций:

Расширенное свойство предела произведения

Предел произведения нескольких функций равен произведению пределов этих функций:

5) Предел частного

Предел частного двух функций равен отношению пределов этих функций при условии, что предел знаменателя не равен нулю:

11. Первый замечательный предел

Доказательство

Рассмотрим односторонние пределы и и докажем, что они равны 1.

Пусть . Отложим этот угол на единичной окружности ().

Точка K - точка пересечения луча с окружностью, а точка L - с касательной к единичной окружности в точке . Точка H - проекция точки K на ось OX .

Очевидно, что:

(где - площадь сектора )

Подставляя в (1), получим:

Так как при :

Умножаем на :

Перейдём к пределу:

Найдём левый односторонний предел:

Правый и левый односторонний пределы существуют и равны 1, а значит и сам предел равен 1.

12-13. Второй замечательный предел

или

Доказательство второго замечательного предела:

Зная, что второй замечательный предел верен для натуральных значений x, докажем второй замечательный предел для вещественных x, то есть докажем, что . Рассмотрим два случая:

1. Пусть . Каждое значение x заключено между двумя положительными целыми числами: , где - это целая часть x.

Отсюда следует: , поэтому

Если , то . Поэтому, согласно пределу , имеем:

По признаку (о пределе промежуточной функции) существования пределов .

2. Пусть . Сделаем подстановку , тогда

Из двух этих случаев вытекает, что для вещественного Х

14. Частные производные.

Пусть z=f (x,y ) . Зафиксируем какую-либо точку (x,y ), а затем, не меняя закрепленного значения аргумента y , придадим аргументу x приращение . Тогда z получит приращение, которое называется частным приращением z по x и обозначается и определяется формулой .

Аналогично, если x сохраняет постоянное значение, а y получает приращение , то z получает частное приращение z по y ,.

Определение . Частной производной по x от функции z=f (x,y ) называется предел отношения частного приращения по x к приращению при стремлении к нулю, т.е.

Частная производная обозначается одним из символов.

Аналогично определяется частная производная по y :

.

Таким образом, частные производные функции двух переменных вычисляются по тем же правилам, что и производные функции одного переменного.

Пример . Найти частные производные функции z=x 2 e x-2y .

Частные производные функции любого числа переменных определяются аналогично.

Определения и свойства бесконечно малых и бесконечно больших функций в точке. Доказательства свойств и теорем. Связь между бесконечно малыми и бесконечно большими функциями.

Содержание

См. также: Бесконечно малые последовательности - определение и свойства
Свойства бесконечно больших последовательностей

Определение бесконечно малой и бесконечно большой функции

Пусть x 0 есть конечная или бесконечно удаленная точка: ∞ , -∞ или +∞ .

Определение бесконечно малой функции
Функция α(x) называется бесконечно малой при x стремящемся к x 0 0 , и он равен нулю:
.

Определение бесконечно большой функции
Функция f(x) называется бесконечно большой при x стремящемся к x 0 , если функция имеет предел при x → x 0 , и он равен бесконечности:
.

Свойства бесконечно малых функций

Свойство суммы, разности и произведения бесконечно малых функций

Сумма, разность и произведение конечного числа бесконечно малых функций при x → x 0 является бесконечно малой функцией при x → x 0 .

Это свойство является прямым следствием арифметических свойств пределов функции .

Теорема о произведении ограниченной функции на бесконечно малую

Произведение функции, ограниченной на некоторой проколотой окрестности точки x 0 , на бесконечно малую, при x → x 0 , является бесконечно малой функцией при x → x 0 .

Свойство о представлении функции в виде суммы постоянной и бесконечно малой функции

Для того, чтобы функция f(x) имела конечный предел , необходимо и достаточно, чтобы
,
где - бесконечно малая функция при x → x 0 .

Свойства бесконечно больших функций

Теорема о сумме ограниченной функции и бесконечно большой

Сумма или разность ограниченной функции, на некоторой проколотой окрестности точки x 0 , и бесконечно большой функции, при x → x 0 , является бесконечно большой функцией при x → x 0 .

Теорема о частном от деления ограниченной функции на бесконечно большую

Если функция f(x) является бесконечно большой при x → x 0 , а функция g(x) - ограничена на некоторой проколотой окрестности точки x 0 , то
.

Теорема о частном от деления ограниченной снизу функции на бесконечно малую

Если функция , на некоторой проколотой окрестности точки , по абсолютной величине ограничена снизу положительным числом:
,
а функция является бесконечно малой при x → x 0 :
,
и существует проколотая окрестность точки , на которой , то
.

Свойство неравенств бесконечно больших функций

Если функция является бесконечно большой при :
,
и функции и , на некоторой проколотой окрестности точки удовлетворяют неравенству:
,
то функция также бесконечно большая при :
.

Это свойство имеет два частных случая.

Пусть, на некоторой проколотой окрестности точки , функции и удовлетворяют неравенству:
.
Тогда если , то и .
Если , то и .

Связь между бесконечно большими и бесконечно малыми функциями

Из двух предыдущих свойств вытекает связь между бесконечно большими и бесконечно малыми функциями.

Если функция является бесконечно большой при , то функция является бесконечно малой при .

Если функция являются бесконечно малой при , и , то функция является бесконечно большой при .

Связь между бесконечно малой и бесконечно большой функцией можно выразить символическим образом:
, .

Если бесконечно малая функция имеет определенный знак при , то есть положительна (или отрицательна) на некоторой проколотой окрестности точки , то можно записать так:
.
Точно также если бесконечно большая функция имеет определенный знак при , то пишут:
, или .

Тогда символическую связь между бесконечно малыми и бесконечно большими функциями можно дополнить следующими соотношениями:
, ,
, .

Дополнительные формулы, связывающие символы бесконечности, можно найти на странице
«Бесконечно удаленные точки и их свойства ».

Доказательство свойств и теорем

Доказательство теоремы о произведении ограниченной функции на бесконечно малую

Для доказательства этой теоремы, мы воспользуемся . А также используем свойство бесконечно малых последовательностей, согласно которому

Пусть функция является бесконечно малой при , а функция ограничена в некоторой проколотой окрестности точки :
при .

Поскольку существует предел , то существует проколотая окрестность точки , на которой определена функция . Пусть есть пересечение окрестностей и . Тогда на ней определены функции и .


.
,
a последовательность является бесконечно малой:
.

Воспользуемся тем, что произведение ограниченной последовательности на бесконечно малую есть бесконечно малая последовательность:
.
.

Теорема доказана.

Доказательство свойства о представлении функции в виде суммы постоянной и бесконечно малой функции

Необходимость . Пусть функция имеет в точке конечный предел
.
Рассмотрим функцию:
.
Используя свойство предела разности функций , имеем:
.
То есть есть бесконечно малая функция при .

Достаточность . Пусть и . Применим свойство предела суммы функций :
.

Свойство доказано.

Доказательство теоремы о сумме ограниченной функции и бесконечно большой

Для доказательства теоремы, мы воспользуемся определением предела функции по Гейне


при .

Поскольку существует предел , то существует проколотая окрестность точки , на которой функция определена. Пусть есть пересечение окрестностей и . Тогда на ней определены функции и .

Пусть есть произвольная последовательность, сходящаяся к , элементы которой принадлежат окрестности :
.
Тогда определены последовательности и . Причем последовательность является ограниченной:
,
a последовательность является бесконечно большой:
.

Поскольку сумма или разность ограниченной последовательности и бесконечно большой
.
Тогда, согласно определению предела последовательности по Гейне,
.

Теорема доказана.

Доказательство теоремы о частном от деления ограниченной функции на бесконечно большую

Для доказательства, мы воспользуемся определением предела функции по Гейне . Также используем свойство бесконечно больших последовательностей, согласно которому является бесконечно малой последовательностью.

Пусть функция является бесконечно большой при , а функция ограничена в некоторой проколотой окрестности точки :
при .

Поскольку функция бесконечно большая, то существует проколотая окрестность точки , на которой она определена и не обращается в нуль:
при .
Пусть есть пересечение окрестностей и . Тогда на ней определены функции и .

Пусть есть произвольная последовательность, сходящаяся к , элементы которой принадлежат окрестности :
.
Тогда определены последовательности и . Причем последовательность является ограниченной:
,
a последовательность является бесконечно большой с отличными от нуля членами:
, .

Поскольку частное от деления ограниченной последовательности на бесконечно большую является бесконечно малой последовательностью, то
.
Тогда, согласно определению предела последовательности по Гейне,
.

Теорема доказана.

Доказательство теоремы о частном от деления ограниченной снизу функции на бесконечно малую

Для доказательства этого свойства, мы воспользуемся определением предела функции по Гейне . Также используем свойство бесконечно больших последовательностей, согласно которому является бесконечно большой последовательностью.

Пусть функция является бесконечно малой при , а функция ограничена по абсолютной величине снизу положительным числом, на некоторой проколотой окрестности точки :
при .

По условию существует проколотая окрестность точки , на которой функция определена и не обращается в нуль:
при .
Пусть есть пересечение окрестностей и . Тогда на ней определены функции и . Причем и .

Пусть есть произвольная последовательность, сходящаяся к , элементы которой принадлежат окрестности :
.
Тогда определены последовательности и . Причем последовательность является ограниченной снизу:
,
а последовательность является бесконечно малой с отличными от нуля членами:
, .

Поскольку частное от деления ограниченной снизу последовательности на бесконечно малую является бесконечно большой последовательностью, то
.
И пусть имеется проколотая окрестность точки , на которой
при .

Возьмем произвольную последовательность , сходящуюся к . Тогда, начиная с некоторого номера N , элементы последовательности будут принадлежать этой окрестности:
при .
Тогда
при .

Согласно определению предела функции по Гейне,
.
Тогда по свойству неравенств бесконечно больших последовательностей,
.
Поскольку последовательность произвольная, сходящаяся к , то по определению предела функции по Гейне,
.

Свойство доказано.

Использованная литература:
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.

См. также:

Теорема 2.4. Если последовательности {x n } и {y n } сходятся и при этом x n ≤ y n , n > n 0 , то lim x n ≤ lim y n .

Пусть lim xn = a,

lim yn = b и a > b. По определению 2.4 предела

последовательности по числу ε =

найдется номер N такой, что

Следовательно, n > max{n0 , N} yn <

< xn , что противоречит

условию.

Замечание. Если последовательности {xn }, {yn } сходятся и для

всех n > n0

xn < yn , то можно утверждать лишь, что lim xn

≤ lim yn .

Чтобы убедиться в этом, достаточно рассмотреть последовательности

и yn =

Непосредственно из определения 2.4 следуют и такие результаты.

Теорема 2.5. Если числовая последовательность {x n } сходится и lim x n < b (b R), то N N: x n < b, n > N .

Cледствие. Если последовательность {xn } сходится и lim xn 6= 0, то

N N: sgn xn = sgn(lim xn ), n > N.

Теорема 2.6. Пусть последовательности {x n }, {y n }, {z n } удовлетворяют условиям:

1) x n ≤ yn ≤ zn , n > n0 ,

2) последовательности {x n } и {z n } сходятся и lim x n = lim z n = a.

Тогда последовательность {y n } сходится и lim y n = a.

2.1.3 Бесконечно малые последовательности

Определение 2.7. Числовая последовательность {x n } называется бесконечно малой (коротко б.м.), если она сходится и lim x n = 0.

Согласно определению 2.4 предела числовой последовательности, определение 2.7 эквивалентно следующему:

Определение 2.8. Числовая последовательность {x n } называется бесконечно малой, если для любого положительного числа ε найдется номер N = N(ε) такой, что при всех n > N элементы x n этой последовательности удовлетворяют неравенству |x n | < ε.

Итак, {xn } - б.м. ε > 0 N = N(ε) : n > N |xn | < ε.

Из примеров 2, 3 и замечания 1 к теореме 2.3 получаем, что после-

довательности (

q −n

являются бесконечно

Свойства бесконечно малых последовательностей описываются следующими теоремами.

Теорема 2.7. Сумма конечного числа бесконечно малых последовательностей есть бесконечно малая последовательность.

Пусть последовательности {xn }, {yn } - бесконечно малые. Покажем, что таковой будет и {xn + yn }. Зададим ε > 0. Тогда найдется номер

N1 = N1 (ε) такой, что

|xn | <

N > N1 ,

и найдется номер N2 = N2 (ε) такой, что

|yn | <

N > N2 .

Обозначим через N = max{N1 , N2 }. При n > N будут справедливы неравенства (2.1) и (2.2) . Поэтому при n > N

|xn + yn | ≤ |xn | + |yn | < 2 + 2 = ε.

Это означает, что последовательность {xn +yn } - бесконечно малая. Утверждение о сумме конечного числа бесконечно малых последо-

вательностей следует из доказанного по индукции.

Теорема 2.8. Произведение бесконечно малой последовательности на ограниченную последовательность есть бесконечно малая.

Пусть {xn } - ограниченная и {yn } - бесконечно малая последовательности. По определению 2.6 ограниченной последовательности найдется число M > 0 такое, что

|xn | ≤ M, n N.

Зафиксируем произвольное число ε > 0. Так как {yn } - бесконечно малая последовательность, то найдется номер N = N(ε) такой, что

Поэтому последовательность {xn · yn } является бесконечно малой.

Cледствие 1. Произведение бесконечно малой последовательности на сходящуюся есть бесконечно малая последовательность.

Cледствие 2. Произведение двух бесконечно малых последовательностей есть бесконечно малая последовательность.

Пользуясь бесконечно малыми последовательностями, на определение сходящейся последовательности можно посмотреть по-другому.

Лемма 2.1. Для того чтобы число a являлось пределом числовой последовательности {x n } , необходимо и достаточно, чтобы имело место представление x n = a + α n , n N, в котором {α n } - бесконечно малая последовательность.

Необходимость. Пусть lim xn = a и a R. Тогда

ε > 0 N = N(ε) N: n > N |xn − a| < ε.

Если положить αn = xn − a, n N, то получим, что {αn } - бесконечно малая последовательность и xn = a + αn , n N.

Достаточность. Пусть последовательность {xn } такова, что существует число a, для которого xn = a + αn , n N, и lim αn = 0. Зафиксируем произвольное положительное число ε. Так как lim αn = 0, то найдется номер N = N(ε) N такой, что |αn | < ε, n > N. То есть, в других обозначениях, n > N |xn − a| < ε. Это означает, что lim xn = a.

Применим лемму 2.1 к одному важному частному примеру.

Лемма 2.2. lim n n = 1.

√ √

Так как для всех n > 1 n n > 1, то n n = 1 + αn , причем αn > 0 для

всех n > 1. Поэтому n = (1 + α

)n = 1 + nα

+ αn .

Поскольку все слагаемые положительны, n

Пусть ε > 0. Так как

2/n < ε для всех n > 2/ε , то, полагая

N = max{1, }, получим, что 0 < αn < ε, n > N. Следовательно,

последовательность {αn } является бесконечно малой и, согласно лемме

2.1, lim n n = 1. √

Cледствие. Если a > 1, то lim n a = 1.√ √

Утверждение следует из неравенств 1 < n a ≤ n n , n > [a].

2.1.4 Арифметические операции с последовательностями

Пользуясь леммой 2.1 и свойствами бесконечно малых последовательностей, легко получить теоремы о пределах последовательностей, получаемых с помощью арифметических операций из сходящихся последовательностей.

|b| 3|b|

2 < |y n | < 2

Теорема 2.9. Пусть числовые последовательности {x n } и {y n } сходятся. Тогда имеют место утверждения:

1) последовательность {x n ± y n } сходится и

lim(xn ± yn ) = lim xn ± lim yn ;

2) последовательность {x n · y n } сходится и

lim(xn · yn ) = lim xn · lim yn ;

3) если lim y n 6= 0, то отношение x n /y n определено, начиная с

некоторого номера, последовательность { x n } сходится и

По теореме 2.8 и следствию 1 последовательности {a · βn }, {b · αn }, {αn · βn } являются бесконечно малыми. По теореме 2.7 последовательность {aβn + bαn + αn βn } бесконечно мала. Из представления (2.5) по лемме 2.1 и следует утверждение 2).

Обратимся к утверждению 3). По условию lim yn = b 6= 0. В силу теоремы 2.3. последовательность {|yn |} сходится и lim |yn | = |b| 6= 0. Поэтому по числу ε = |b|/2 найдется номер N такой, что n > N

0 < | 2 b| = |b| −

Следовательно, yn =6 0, и 3|b| < y n < |b| , n > N.

Таким образом, частное xn /yn определено для всех n > N, а последовательность {1/yn } ограничена. Рассмотрим для всех n > N разность

(αn b − aβn ).

Последовательность

αn b

aβn

Бесконечно малая,

ограниченные. По теореме 2.8 последовательность

− b

нечно малая. Поэтому, в силу леммы 2.1, утверждение 3) доказано. Cледствие 1. Если последовательность {xn } сходится, то для лю-

бого числа c последовательность {c · xn } сходится и lim(cxn ) = c · lim xn .

Функция называется бесконечно малой при
или при
, если
или
.

Например: функция
бесконечно малая при
; функция
бесконечно малая при
.

Замечание 1. Никакую функцию без указания направления изменения аргумента бесконечно малой назвать нельзя. Так, функция
при
является бесконечно малой, а при
она уже не является бесконечно малой (
).

Замечание 2. Из определения предела функции в точке, для бесконечно малых функций выполняется неравенство
.Этим фактом мы в дальнейшем будем неоднократно пользоваться.

Установим некоторые важные свойства бесконечно малых функций.

Теорема (о связи функции, её предела и бесконечно малой): Если функция
может быть представлена в виде суммы постоянного числаА и бесконечно малой функции
при
, то число

Доказательство:

Из условия теоремы следует, что функция
.

Выразим отсюда
:
. Поскольку функция
бесконечно малая, для неё справедливо неравенство
, тогда для выражения (
) также выполняется неравенство

А это значит, что
.

Теорема (обратная): если
, то функция
может быть представлена в виде суммы числаА и бесконечно малой при
функции
, т.е.
.

Доказательство:

Так как
, то для
выполняется неравенство
(*) Рассмотрим функцию
как единую и неравенство (*) перепишем в виде

Из последнего неравенства следует, что величина (
) является бесконечно малой при
. Обозначим её
.

Откуда
. Теорема доказана.

Теорема 1 . Алгебраическая сумма конечного числа бесконечно малых функций есть бесконечно малая функция.

Доказательство:

Проведём доказательство для двух слагаемых, так как для любого конечного числа слагаемых оно приводится аналогично.

Пусть
и
бесконечно малые при
функции и
– сумма этих функций. Докажем, что для
, существует такое
, что для всехх , удовлетворяющих неравенству
, выполняется неравенство
.

Так как функция
бесконечно малая функция,
, что для всех
выполняется неравенство
.

Так как функция
бесконечно малая функция,
, а следовательно существует такое, что для всех
выполняется неравенство
.

Возьмём равным меньшему из чисели, тогда в–окрестности точкиа будут выполняться неравенства
,
.

Составим модуль функции
и оценим его значение.

То есть
, тогда функция бесконечно малая, что и требовалось доказать.

Теорема 2. Произведение бесконечно малой функции
при
на ограниченную функцию
есть бесконечно малая функция.

Доказательство:

Так как функция
ограниченная, то существует такое положительное число
, что для всехвыполняется неравенство
.

Так как функция
бесконечно малая при
, то существует такая–окрестность точки, что для всехих этой окрестности выполняется неравенство
.

Рассмотрим функцию
и оценим её модуль

Итак
, а тогда
– бесконечно малая.

Теорема доказана.

Теоремы о пределах.

Теорема 1. Предел алгебраической суммы конечного числа функций равен алгебраической сумме пределов этих функций

Доказательство:

Для доказательства достаточно рассмотреть две функции, это не нарушит общности рассуждений.

Пусть
,
.

По теореме о связи функции, её предела и бесконечно малой, функции
и
можно представить в виде
где
и
– бесконечно малые при
.

Найдём сумму функций
и

Величина
есть постоянная величина,
– величина бесконечно малая. Таким образом, функция
представлена в виде суммы постоянной величины и бесконечно малой функции.

Тогда число
является пределом функции
, т.е.

Теорема доказана.

Теорема 2 . Предел произведения конечного числа функций равен произведению пределов этих функций

Доказательство:

Не нарушая общности рассуждений, проведём доказательство для двух функций
и
.

Пусть , тогда
,

Найдём произведение функций
и

Величина
есть постоянная величина,бесконечно малая функция. Следовательно, число
является пределом функции
, то есть справедливо равенство

Следствие:
.

Теорема 3. Предел частного двух функций равен частному пределов этих функций, если предел знаменателя отличен от нуля

.

Доказательство: Пусть
,

Тогда
,
.

Найдём частное и проделаем над ним некоторые тождественные преобразования

Величина постоянная, дробь
бесконечно малая. Следовательно, функцияпредставлена в виде суммы постоянного числа и бесконечно малой функции.

Тогда
.

Замечание. Теоремы 1–3 доказаны для случая
. Однако, они могут быть применимы при
, поскольку доказательство теорем в этом случае проводится аналогично.

Например. Найти пределы:


Первый и второй замечательные пределы.

Функция не определена при
. Однако её значения в окрестности точки нуль существуют. Поэтому можно рассматривать предел этой функции при
. Этот предел носит названиепервого замечательного предела .

Он имеет вид:
.

Например . Найти пределы: 1.
. Обозначают
, если
, то
.
; 2.
. Преобразуем данное выражение так, чтобы предел свёлся к первому замечательному пределу.
; 3..

Рассмотрим переменную величину вида
, в которойпринимает значения натуральных чисел в порядке их возрастания. Дадимразличные значения: если





Давая следующие значения из множества
, нетрудно увидеть, что выражение
при
будет
. Более того, доказывается, что
имеет предел. Этот предел обозначается буквой:
.

Число иррациональное:
.

Теперь рассмотрим предел функции
при
. Этот предел называетсявторым замечательным пределом

Он имеет вид
.

Например.

а)
. Выражение
заменим произведениемодинаковых сомножителей
, применим теорему о пределе произведения и второй замечательный предел; б)
. Положим
, тогда
,
.

Второй замечательный предел используется взадаче о непрерывном начислении процентов

При начислении денежных доходов по вкладам часто пользуются формулой сложных процентов, которая имеет вид:

,

где - первоначальный вклад,

- ежегодный банковский процент,

- число начислений процентов в год,

- время, в годах.

Однако, в теоретических исследованиях при обосновании инвестиционных решений чаще пользуются формулой экспоненциального (показательного) закона роста

.

Формула показательного закона роста получена как результат применения второго замечательного предела к формуле сложных процентов

Непрерывность функций.

Рассмотрим функцию
определённую в некоторой точкеи некоторой окрестности точки. Пусть в указанной точке функция имеет значение
.

Определение 1. Функция
называется непрерывной в точке , если она определена в окрестности точки, включая саму точку и
.

Определение непрерывности можно сформулировать иначе.

Пусть функция
определена при некотором значении,
. Если аргументудать приращение
, то функция получит приращение

Пусть функция в точке непрерывна (по первому определению непрерывности функции в точке),

То есть, если функция непрерывна в точке , то бесконечно малому приращению аргумента
в этой точке соответствует бесконечно малое приращение функции.

Справедливо и обратное предложение: если бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции, то функция непрерывна.

Определение 2. Функция
называется непрерывной при
(в точке), если она определена в этой точке и некоторой её окрестности и если
.

Учитывая первое и второе определение непрерывности функции в точке можно получить следующее утверждение:

или
, но
, тогда
.

Следовательно, для того чтобы найти предел непрерывной функции при
достаточно в аналитическое выражение функции вместо аргументаподставить его значение.

Определение 3. Функция, непрерывная в каждой точке некоторой области называется непрерывной в этой области.

Например:

Пример 1. Доказать, что функция
непрерывна во всех точках области определения.

Воспользуемся вторым определением непрерывности функции в точке. Для этого возьмём любое значение аргумента и дадим ему приращение
. Найдём соответствующее приращение функции

Пример 2. Доказать, что функция
непрерывна во всех точкахиз
.

Дадим аргументу приращение
, тогда функция получит приращение

Найдём так как функция
, то есть ограничена.

Аналогично можно доказать, что все основные элементарные функции непрерывны во всех точках области их определения, то есть область определения элементарной функции совпадает с областью её непрерывности.

Определение 4. Если функция
непрерывна в каждой точке некоторого интервала
, то говорят, что функция непрерывна на этом интервале.



Похожие статьи