Круги эйлера история. Решение задач с помощью «кругов эйлера

Круги Эйлера – это геометрическая схема. С ее помощью можно изобразить отношения между подмножествами (понятиями), для наглядного представления.

Способ изображения понятий в виде кругов позволяет развивать воображение и логическое мышление не только детям, но и взрослым. Начиная с 4-5 лет детям доступно решение простейших задач с кругами Эйлера, сначала с разъяснениями взрослых, а потом и самостоятельно. Овладение методом решения задач с помощью кругов Эйлера формирует у ребенка способность анализировать, сопоставлять, обобщать и группировать свои знания для более широкого применения.

Пример

На рисунке представлено множество – все возможные игрушки. Некоторые из игрушек являются конструкторами – они выделены в отдельный овал. Это часть большого множества «игрушки» и одновременно отдельное множество (ведь конструктором может быть и «Лего», и примитивные конструкторы из кубиков для малышей). Какая-то часть большого множества «игрушки» может быть заводными игрушками. Они не конструкторы, поэтому мы рисуем для них отдельный овал. Желтый овал «заводной автомобиль» относится одновременно к множеству «игрушки» и является частью меньшего множества «заводная игрушка». Поэтому и изображается внутри обоих овалов сразу.

Вот несколько задач для маленьких детей на логическое мышление:

  • Определить круги, которые подходят к описанию предмета. При этом желательно обратить внимание на те качества, которыми предмет обладает постоянно и которыми временно. Например, стеклянный стакан с соком всегда остается стеклянным, но сок в нем есть не всегда. Или существует какое-то обширное определение, которое включает в себя разные понятия, подобную классификацию тоже можно изобразить с помощью кругов Эйлера. Например, виолончель – это музыкальный инструмент, но не каждый музыкальный инструмент окажется виолончелью.




Для детей постарше можно предлагать варианты задач с вычислениями – от достаточно простых до совсем сложных. Причем самостоятельное придумывание этих задач для детей обеспечит родителям очень хорошую разминку для ума.

  • 1. Из 27 пятиклассников все изучают иностранные языки – английский и немецкий. 12 изучают немецкий язык, а 19 – английский. Необходимо определить, сколько пятиклассников заняты изучением двух иностранных языков; сколько не изучают немецкий; сколько не изучают английский; сколько изучают только немецкий и только английский?

При этом первый вопрос задачи намекает в целом на путь к решению этой задачи, сообщая, что некоторые школьники изучают оба языка, и в этом случае использование схемы также упрощает понимание задачи детьми.

Леонард Эйлер – величайший из математиков,написал более 850 научных работ. В одной из них и появились эти круги.

Учёный писал, что «они очень подходят для того, чтобы облегчить наши размышления».

Круги Эйлера – это геометрическая схема, которая помогает находить и/или делать более наглядными логические связи между явлениями и понятиями. А также помогает изобразить отношения между каким-либо множеством и его частью.

Задача 1

Из 90 туристов, отправляющихся в путешествие, немецким языком владеют 30 человек, английским – 28 чел, французским – 42 чел. Английским и немецким одновременно владеют 8 человек, английским и французским -10 чел, немецким и французским – 5 чел, всеми тремя языками – 3 чел. Сколько туристов не владеют ни одним языком?

Решение:

Покажем условие задачи графически – с помощью трёх кругов

Ответ: 10 человек.

Задача 2

Многие ребята нашего класса любят футбол, баскетбол и волейбол. А некоторые - даже два или три из этих видов спорта. Известно, что 6 человек из класса играют только в волейбол, 2 – только в футбол, 5 – только в баскетбол. Только в волейбол и футбол умеют играть 3 человека, в футбол и баскетбол – 4, в волейбол и баскетбол – 2. Один человек из класса умеет играть во все игры, 7 не умеют играть ни в одну игру. Требуется найти:

Сколько всего человек в классе?

Сколько человек умеют играть в футбол?

Сколько человек умеют играть в волейбол?


Задача 3

В детском лагере отдыхало 70 ребят. Из них 20 занимаются в драмкружке, 32 поют в хоре, 22 увлекаются спортом. В драмкружке 10 ребят из хора, в хоре 6 спортсменов, в драмкружке 8 спортсменов, а 3 спортсмена посещают и драмкружок, и хор. Сколько ребят не поют в хоре, не увлекаются спортом и не занимаются в драмкружке? Сколько ребят заняты только спортом?

Задача 4

Из сотрудников фирмы 16 побывали во Франции, 10 – в Италии, 6 – в Англии. В Англии и Италии – пятеро, в Англии и Франции – 6, во всех трёх странах – 5 сотрудников. Сколько человек посетили и Италию, и Францию, если всего в фирме работает 19 человек, и каждый их них побывал хотя бы в одной из названных стран?

Задача 5

Шестиклассники заполняли анкету с вопросами об их любимых мультфильмах. Оказалось, что большинству из них нравятся «Белоснежка и семь гномов», «Губка Боб Квадратные Штаны» и «Волк и теленок». В классе 38 учеников. «Белоснежка и семь гномов» нравится 21 ученику. Причем трем среди них нравятся еще и «Волк и теленок», шестерым - «Губка Боб Квадратные Штаны», а один ребенок одинаково любит все три мультфильма. У «Волка и теленка» 13 фанатов, пятеро из которых назвали в анкете два мультфильма. Надо определить, скольким же шестиклассникам нравится «Губка Боб Квадратные Штаны».

Задачи для решения учащимися

1. В классе 35 учеников. Все они являются читателями школьной и район­ной библиотек. Из них 25 берут книги в школьной библиотеке, 20 - в рай­онной. Сколько из них:

а) не являются читателями школь­ной библиотеки;

б) не являются читателями район­ной библиотеки;

в) являются читателями только школьной библиотеки;

г) являются читателями только рай­онной библиотеки;

д) являются читателями обеих библиотек?

2.Каждый ученик в классе изучает английский или немецкий язык, или оба этих языка. Английский язык изучают 25 человек, немецкий - 27 человек, а тот и другой - 18 человек. Сколько всего учеников в классе?

3.На листе бумаги начертили круг площадью 78 см2 и квадрат площадью 55 см2. Площадь пересечения круга и квадрата равна 30 см2. Не занятая кру­гом и квадратом часть листа имеет пло­щадь 150 см2. Найдите площадь листа.

4. В группе туристов 25 человек. Среди них 20 человек моложе 30 лет и 15 человек старше 20 лет. Может ли так быть? Если может, то в каком случае?

5. В детском саду 52 ребенка. Каж­дый из них любит пирожное или моро­женое, или то и другое. Половина де­тей любит пирожное, а 20 человек - пирожное и мороженое. Сколько де­тей любит мороженое?

6. В классе 36 человек. Ученики это­го класса посещают математический, физический и химический кружки, причем математический кружок по­сещают 18 человек, физический - 14, химический - 10. Кроме того, извест­но, что 2 человека посещают все три кружка, 8 человек -.и математиче­ский, и физический, 5 - и математи­ческий, и химический, 3 - и физи­ческий, и химический кружки. Сколько учеников класса не посещают ни­какие кружки?

7. После каникул классный руково­дитель спросил, кто из ребят ходил в театр, кино или цирк. Оказалось, что из 36 учеников двое не были ни в кино, ни в театре, ни в цирке. В кино побы­вали 25 человек; в театре - 11; в цир­ке - 17; и в кино, и в театре - 6; и в кино, и в цирке - 10; и в театре, и в цирке - 4. Сколько человек побы­вали в театре, кино и цирке одновре­менно?

Решение задач ЕГЭ с помощью кругов Эйлера

Задача 1

В языке запросов поискового сервера для обозначения логической операции «ИЛИ» используется символ «|», а для логической операции «И» - символ «&».

Крейсер & Линкор ? Считается, что все вопросы выполняются практически одновременно, так что набор страниц, содержащих все искомые слова, не изменялся за время выполнения запросов.

Запрос Найдено страниц (в тысячах)
Крейсер | Линкор 7000
Крейсер 4800
Линкор 4500

Решение:

При помощи кругов Эйлера изобразим условия задачи. При этом цифры 1, 2 и 3 используем, чтобы обозначить полученные в итоге области.

Опираясь на условия задачи, составим уравнения:

  1. Крейсер | Линкор: 1 + 2 + 3 = 7000
  2. Крейсер: 1 + 2 = 4800
  3. Линкор: 2 + 3 = 4500

Чтобы найти Крейсер & Линкор (обозначенный на чертеже как область 2), подставим уравнение (2) в уравнение (1) и выясним, что:

4800 + 3 = 7000, откуда получаем 3 = 2200.

Теперь этот результат мы можем подставить в уравнение (3) и выяснить, что:

2 + 2200 = 4500, откуда 2 = 2300.

Ответ: 2300 - количество страниц, найденных по запросу Крейсер & Линкор.

Задача 2

В языке запросов поискового сервера для обозначения

В таблице приведены запросы и количество найденных по ним страниц некоторого сегмента сети Интернет.
Запрос
Найдено страниц (в тысячах)
Торты | Пироги
12000
Торты & Пироги
6500
Пироги
7700

Какое количество страниц (в тысячах) будет найдено по запросу Торты ?



Решение

Для решения задачи отобразим множества Тортов и Пирогов в виде кругов Эйлера.

А , Б , В ).

Из условия задачи следует:

Торты │Пироги = А + Б + В = 12000

Торты & Пироги = Б = 6500

Пироги = Б + В = 7700

Чтобы найти количество Тортов (Торты = А + Б ), надо найти сектор А Торты│Пироги ) отнимем множество Пироги.

Торты│Пироги – Пироги = А + Б + В -(Б + В ) = А = 1200 – 7700 = 4300

Сектор А равен 4300, следовательно

Торты = А + Б = 4300+6500 = 10800

Задача 3

|", а для логической операции "И" - символ "&".

В таблице приведены запросы и количество найденных по ним страниц некоторого сегмента сети Интернет.
Запрос
Найдено страниц (в тысячах)
Пироженое & Выпечка
5100
Пироженое
9700
Пироженое | Выпечка
14200

Какое количество страниц (в тысячах) будет найдено по запросуВыпечка ?

Считается, что все запросы выполнялись практически одновременно, так что набор страниц, содержащих все искомые слова, не изменялся за время выполнения запросов.

Решение

Для решения задачи отобразим множества Пироженых и Выпечек в виде кругов Эйлера.

Обозначим каждый сектор отдельной буквой (А , Б , В ).

Из условия задачи следует:

Пироженое & Выпечка = Б = 5100

Пироженое = А + Б = 9700

Пироженое │ Выпечка = А + Б + В = 14200

Чтобы найти количество Выпечки (Выпечка = Б + В ), надо найти сектор В , для этого из общего множества (Пироженое │ Выпечка) отнимем множество Пироженое .

Пироженое │ Выпечка – Пироженное = А + Б + В -(А + Б ) = В = 14200–9700 = 4500

Сектор В равен 4500, следовательноВыпечка = Б + В = 4500+5100 = 9600

Задача 4
убывания
Для обозначения
логической операции "ИЛИ" используется символ " |", а для логической операции "И" - символ "&".
Решение

Представим множества овчарок, терьеров и спаниелей в виде кругов Эйлера, обозначим сектора буквами (А , Б , В , Г ).

с паниели │(терьеры & овчарки) = Г + Б

с паниели│овчарки = Г + Б + В

спаниели│терьеры│овчарки = А + Б + В + Г

терьеры & овчарки = Б

Расположим номера запросов в порядке убывания количества страниц: 3 2 1 4

Задача 5

В таблице приведены запросы к поисковому серверу. Расположите номера запросов в порядке возрастания количества страниц, которые найдет поисковый сервер по каждому запросу.
Для обозначения логической операции "ИЛИ" используется символ " |", а для логической операции "И" - символ "&".

1
барокко | классицизм | ампир
2
барокко | (классицизм & ампир)
3
классицизм & ампир
4
барокко | классицизм

Решение

Представим множества классицизм, ампир и классицизм в виде кругов Эйлера, обозначим сектора буквами (А , Б , В , Г ).

Преобразим условие задачи в виде суммы секторов:

барокко│ классицизм │ампир = А + Б + В + Г
барокко │(классицизм & ампир) = Г + Б

классицизм & ампир = Б
барокко│ классицизм = Г + Б + А

Из сумм секторов мы видим какой запрос выдал больше количества страниц.

Расположим номера запросов в порядке возрастания количества страниц: 3 2 4 1



Задача 6
В таблице приведены запросы к поисковому серверу. Расположите номера запросов в порядке возрастания количества страниц, которые найдет поисковый сервер по каждому запросу.
Для обозначения
логической операции "ИЛИ" используется символ " |", а для логической операции "И" - символ "&".
1
канарейки | щеглы | содержание
2
канарейки & содержание
3
канарейки & щеглы & содержание
4
разведение & содержание & канарейки & щеглы

Решение

Для решения задачи представим запросы в виде кругов Эйлера.

K - канарейки,

Щ – щеглы,

Р – разведение.

канарейки | терьеры | содержание канарейки & содержание канарейки & щеглы & содержание разведение & содержание & канарейки & щеглы








Самая большая область закрашенных секторов у первого запроса, затем у второго, затем у третьего, а у четвертого запроса самый маленький.

В порядке возрастания по количеству страниц запросы будут представлены в следующем порядке: 4 3 2 1

Обратите внимание что в первом запросе закрашенные сектора кругов Эйлера содержат в себе закрашенные сектора второго запроса, а закрашенные сектора второго запроса содержат закрашенные сектора третьего запроса, закрашенные сектора третьего запроса содержат закрашенный сектор четвертого запроса.

Только при таких условиях мы можем быть уверены, что правильно решили задачу.

Задача 7 (ЕГЭ 2013)

В языке запросов поискового сервера для обозначения логической операции «ИЛИ» используется символ «|», а для логической операции «И» – символ «&».

В таблице приведены запросы и количество найденных по ним страниц некоторого сегмента сети Интернет.

Запрос Найдено страниц
(в тысячах)
Фрегат | Эсминец 3400
Фрегат & Эсминец 900
Фрегат 2100

Какое количество страниц (в тысячах) будет найдено по запросу Эсминец ?
Считается, что все запросы выполнялись практически одновременно, так что набор страниц, содержащих все искомые слова, не изменялся за время выполнения запросов.

РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ «КРУГОВ ЭЙЛЕРА»

Рыбина Ангелина

Класс 5 «Д», МОУ «СОШ № 59 с УИП», РФ, г. Саратов

Багаева Ирина Викторовна

научный руководитель, педагог высшей категории, преподаватель математики, МОУ «СОШ № 59 с УИП», РФ, г. Саратов

«… круги очень подходят для того, чтобы облегчить наши размышления»

Леонард Эйлер

Нет ученого, имя которого упоминалось бы в учебной математической литературе столь же часто, как имя Эйлера. Даже в средней школе логарифмы и тригонометрию изучают до сих пор в значительной степени «по Эйлеру».

В 1741 году Эйлер пишет «Письма о разных физических и философических материях, написанные к некоторой немецкой принцессе...», где появились впервые «круги Эйлера». Эйлер писал тогда, что «круги очень подходят для того, чтобы облегчить наши размышления».

При решении целого ряда задач Леонард Эйлер использовал идею изображения множеств с помощью кругов и они получили название «круги Эйлера».

С помощью этих кругов Эйлер изобразил и множество всех действительных чисел:

· N - множество натуральных чисел,

· Z - множество целых чисел,

· Q - множество рациональных чисел,

· R - множество всех действительных чисел.

Рисунок 1. Изображение множества действительных чисел

Что такое множество?

В математике нет точного определения этого понятия. Понятие «множество» не определяется, оно поясняется примерами: множество яблок в корзине; множество точек отрезка прямой. Множество состоит из элементов. В приведенных примерах - это яблоки, буквы, точки.

Множества обозначаются заглавными буквами латинского алфавита: А, В, С, ... K, M, N … Х, ...; элементы множества - строчными буквами алфавита: а, в, с, ... k, m, n … х, у, .... А={а; в; с; d} - множество А состоит из элементов а, в, с, d, или, говорят, что элемент а принадлежит множеству А, записывается: аА (знак читается: «принадлежит»). Элемент 5 не входит в множество А, говорят, что «5 не принадлежит А»: 5 А, или . Если множество В не содержит ни одного элемента, то говорят, что оно пустое, обозначается: В=.

Под множеством можно понимать совокупность каких-либо объектов, называемых элементами множества . Примерами множеств могут быть и дома на нашей улице, и алфавит - совокупность букв, и наш 5 «Д» класс - множество учеников.

Множества могут быть:

· Конечное (элементы которого можно пересчитать; например - множество цифр)

· Пустое (не содержащее ни одного элемента; например - множество зайцев, которые учатся в нашем классе).

Множество K называется подмножеством множества N, если каждый элемент множества K является элементом множества N. Обозначается: KÍN. Говорят, что множество K включается в множество N.

Подмножества можно проиллюстрировать кругами Эйлера.

Рисунок 2. Изображение подмножества

Действия с множествами

В математике существуют несколько операций над множествами. Мы разберем два из них: пересечение и объединение.

1. Пересечение множеств

Пересечением множеств M и N называется множество, состоящее из элементов, одновременно принадлежащих M и N . Пересечение множеств M и N обозначается .

Пример. Множество N = { А Н Д Р Е Й };

множество K = { А Л Е К С Е Й }; множество M = { Д М И Т Р И Й }

Рисунок 3. Пример пересечения множеств

2. Объединение множеств

Объединение множеств - это множество, содержащее в себе все элементы исходных множеств. Объединение множеств M и N обозначается .

Пример ; 2) объединение множества всех пород собак и множества мопсов есть множество всех собак.

Операции объединения и пересечения множеств очень удобно показывать с помощью кругов Эйлера.

По определению в пересечение двух множеств M и N входят элементы, принадлежащие множествам M и N одновременно

Пример. Пусть D - множество из 12 самых хороших девочек, M - множество из 12 самых умных мальчиков. Получили наш класс.

Рисунок 4. Пример объединения множеств

3. Вложенные множества.

Пример. Имеется три множества: «дети», «школьники», «учащиеся начальной школы». Мы видим, что эти 3 множества находятся одно внутри другого. Про множество, находящееся внутри другого множества, говорят, что оно вложенное.

Рисунок 5. Пример вложенных множеств

Задачи, которые можно решить с помощью диаграмм Эйлера

Задача № 1

На стол бросили две салфетки 10 см х 10 см. Они покрыли площадь стола, равную 168. Какова площадь перекрытия?

1)168 – 10 х 10 = 68;

2)10 х 10 – 68 = 32.

Ответ: 32 см

Рисунок 6. Рисунок к задаче № 1

Задача № 2

В поход ходили 80 % учеников класса, а на экскурсии было 60 %, причем каждый был в походе или на экскурсии. Сколько процентов класса были и там, и там?

А - множество учеников, которые ходили в поход

В - множество учеников, которые были на экскурсии

100 % – 80 % = 20 %

60 % – 20 % = 40 %

Ответ: 40 %

Рисунок 7. Рисунок к задаче № 2

Задача № 3

В нашем классе 24 ученика. Все они хорошо провели зимние каникулы.10 человек катались на лыжах, 16 ездили на каток, а 12 - лепили снеговиков. Сколько учеников смогли покататься и на лыжах, и на коньках, и слепить снеговика?

А - множество ребят, катающихся на лыжах

В - множество ребят, катающихся на коньках

С - множество ребят, лепивших снеговиков

Пусть х - число ребят,

которые успели за эти каникулы всё!

(12 - х) + (16 - х) + (10 - х) + х = 24

Ответ: 7 ребят

Рисунок 8. Рисунок к задаче № 3

Задача № 4

9 моих друзей любят бананы, 8 – апельсины, а 7 – сливы, 5 – бананы и апельсины, 3 – бананы и сливы, 4 – апельсины и сливы, 2 – бананы, апельсины и сливы. Сколько у меня друзей?

5 – 2 = 3 3 – 2 = 1 4 – 2 = 2

9 – 6 = 3 8 – 7 = 1 7 – 5 = 2

3 + 1 + 2 + 3 + 2 + 1 + 2 = 14

Ответ: 14 друзей

Рисунок 9. Рисунок к задаче № 4

Задача № 5

В пионерском лагере «Дубки» в смене актива отдыхали: 30 отличников, 28 победителей олимпиад и 42 спортсмена. 10 человек были и отличниками и победителями олимпиад, 5 - отличниками и спортсменами, 8 - спортсменами и победителями олимпиад, 3 - и отличники, и спортсмены, и победители олимпиад.

Сколько ребят отдыхали в лагере?

А - множество отличников

В - множество победителей олимпиад

С - множество спортсменов

10 – 3 = 7 5 – 3 = 2 8 – 3 = 5

30 – 12 = 18 28 – 15 = 13 42 – 10 = 32

18 + 13 + 32 + 7 + 2 + 5 + 3 = 80

Ответ: 80 ребят

Рисунок 10. Рисунок к задаче № 5

3. Заключение

Диаграммы Эйлера - это общее название целого ряда способов графической иллюстрации, широко используемых в различных областях математики: теория множеств, теория вероятностей, логика, статистика, компьютерные науки, и др. Применение кругов Эйлера позволяет даже пятикласснику легко решать задачи, которые обычным путем решаются только в старших классах.

Список литературы:

1.Александрова Р.А., Потапов А.М. Элементы теории множеств и математической логики. Практикум / Калининград. 1997. - 66 с.

2.Депман И.Я., Виленкин Н.Я. За страницами учебника математики. Пособие для учащихся 5-6 кл. М.: Просвещение, 1999. с. 189-191, 231.

3.Задачи для внеклассной работы по математике в V-VI классах: Пособие для учителей / Сост. В.Ю. Сафонова. Под ред. Д.Б. Фукса, А.Л. Гавронского. М.: МИРОС, 1993. - с. 42.

4.Занимательная математика. 5-11 классы. Как сделать уроки нескучными / Авт. сост. Т.Д. Гаврилова. Волгоград: Учитель, 2005. - с. 32-38.

5.Смыкалова Е.В. Дополнительные главы по математике для учащихся 5 класса. СПб: СМИО Пресс, 2009. - с. 14-20.

6.Энциклопедия для детей. Т. 11. Математика Глав.ред. М.Д. Аксёнова. М.: Аванта +, 2001. - с. 537-542.

Если вы думаете, что ничего не знаете о кругах Эйлера, вы ошибаетесь. На самом деле вы наверняка не раз с ними сталкивались, просто не знали, как это называется. Где именно? Схемы в виде кругов Эйлера легли в основу многих популярных интернет-мемов (растиражированных в сети изображений на определенную тему).

Давайте вместе разберемся, что же это за круги, почему они так называются и почему ими так удобно пользоваться для решения многих задач.

Происхождение термина

– это геометрическая схема, которая помогает находить и/или делать более наглядными логические связи между явлениями и понятиями. А также помогает изобразить отношения между каким-либо множеством и его частью.

Пока не очень понятно, верно? Посмотрите на этот рисунок:

На рисунке представлено множество – все возможные игрушки. Некоторые из игрушек являются конструкторами – они выделены в отдельный овал. Это часть большого множества «игрушки» и одновременно отдельное множество (ведь конструктором может быть и «Лего», и примитивные конструкторы из кубиков для малышей). Какая-то часть большого множества «игрушки» может быть заводными игрушками. Они не конструкторы, поэтому мы рисуем для них отдельный овал. Желтый овал «заводной автомобиль» относится одновременно к множеству «игрушки» и является частью меньшего множества «заводная игрушка». Поэтому и изображается внутри обоих овалов сразу.

Ну что, так стало понятнее? Именно поэтому круги Эйлера – это тот метод, который наглядно демонстрирует: лучше один раз увидеть, чем сто раз услышать. Его заслуга в том, что наглядность упрощает рассуждения и помогает быстрее и проще получить ответ.

Автор метода - ученый Леонард Эйлер (1707-1783). Он так и говорил о названных его именем схемах: «круги подходят для того, чтобы облегчить наши размышления». Эйлер считается немецким, швейцарским и даже российским математиком, механиком и физиком. Дело в том, что он много лет проработал в Петербургской академии наук и внес существенный вклад в развитие российской науки.

До него подобным принципом при построении своих умозаключений руководствовался немецкий математик и философ Готфрид Лейбниц.

Метод Эйлера получил заслуженное признание и популярность. И после него немало ученых использовали его в своей работе, а также видоизменяли на свой лад. Например, чешский математик Бернард Больцано использовал тот же метод, но с прямоугольными схемами.

Свою лепту внес также немецкий математике Эрнест Шредер. Но главные заслуги принадлежат англичанину Джону Венну. Он был специалистом в логике и издал книгу «Символическая логика», в которой подробно изложил свой вариант метода (использовал преимущественно изображения пересечений множеств).

Благодаря вкладу Венна метод даже называют диаграммами Венна или еще Эйлера-Венна.

Зачем нужны круги Эйлера?

Круги Эйлера имеют прикладное назначение, то есть с их помощью на практике решаются задачи на объединение или пересечение множеств в математике, логике, менеджменте и не только.

Если говорить о видах кругов Эйлера, то можно разделить их на те, что описывают объединение каких-то понятий (например, соотношение рода и вида) – мы их рассмотрели на примере в начале статьи.

А также на те, что описывают пересечение множеств по какому-то признаку. Таким принципом руководствовался Джон Венн в своих схемах. И именно он лежит в основе многих популярных в интернете мемов. Вот вам один из примеров таких кругов Эйлера:

Забавно, правда? И главное, все сразу становится понятно. Можно потратить много слов, объясняя свою точку зрения, а можно просто нарисовать простую схему, которая сразу расставит все по местам.

Кстати, если вы не можете определиться, какую профессию выбрать, попробуйте нарисовать схему в виде кругов Эйлера. Возможно, чертеж вроде этого поможет вам определиться с выбором:

Те варианты, которые окажутся на пересечении всех трех кругов, и есть профессия, которая не только сможет вас прокормить, но и будет вам нравиться.

Решение задач с помощью кругов Эйлера

Давайте рассмотрим несколько примеров задач, которые можно решить с помощью кругов Эйлера.

Вот на этом сайте - http://logika.vobrazovanie.ru/index.php?link=kr_e.html Елена Сергеевна Саженина предлагает интересные и несложные задачи, для решения которых потребуется метод Эйлера. Используя логику и математику, разберем одну из них.

Задача про любимые мультфильмы

Шестиклассники заполняли анкету с вопросами об их любимых мультфильмах. Оказалось, что большинству из них нравятся «Белоснежка и семь гномов», «Губка Боб Квадратные Штаны» и «Волк и теленок». В классе 38 учеников. «Белоснежка и семь гномов» нравится 21 ученику. Причем трем среди них нравятся еще и «Волк и теленок», шестерым - «Губка Боб Квадратные Штаны», а один ребенок одинаково любит все три мультфильма. У «Волка и теленка» 13 фанатов, пятеро из которых назвали в анкете два мультфильма. Надо определить, скольким же шестиклассникам нравится «Губка Боб Квадратные Штаны».

Решение:

Так как по условиям задачи у нас даны три множества, чертим три круга. А так как по ответам ребят выходит, что множества пересекаются друг с другом, чертеж будет выглядеть так:

Мы помним, что по условиям задачи среди фанатов мультфильма «Волк и теленок» пятеро ребят выбрали два мультфильма сразу:

Выходит, что:

21 – 3 – 6 – 1 = 11 – ребят выбрали только «Белоснежку и семь гномов».

13 – 3 – 1 – 2 = 7 – ребят смотрят только «Волк и теленок».

Осталось только разобраться, сколько шестиклассников двум другим вариантам предпочитает мультфильм «Губка Боб Квадратные Штаны». От всего количества учеников отнимаем всех тех, кто любит два других мультфильма или выбрал несколько вариантов:

38 – (11 + 3 + 1 + 6 + 2 + 7) = 8 – человек смотрят только «Губка Боб Квадратные Штаны».

Теперь смело можем сложить все полученные цифры и выяснить, что:

мультфильм «Губка Боб Квадратные Штаны» выбрали 8 + 2 + 1 + 6 = 17 человек. Это и есть ответ на поставленный в задаче вопрос.

А еще давайте рассмотрим задачу , которая в 2011 году была вынесена на демонстрационный тест ЕГЭ по информатике и ИКТ (источник - http://eileracrugi.narod.ru/index/0-6).

Условия задачи:

В языке запросов поискового сервера для обозначения логической операции «ИЛИ» используется символ «|», а для логической операции «И» - символ «&».

В таблице приведены запросы и количество найденных по ним страниц некоторого сегмента сети интернет.

Запрос Найдено страниц (в тысячах)
Крейсер | Линкор 7000
Крейсер 4800
Линкор 4500

Какое количество страниц (в тысячах) будет найдено по запросу Крейсер & Линкор ?

Считается, что все вопросы выполняются практически одновременно, так что набор страниц, содержащих все искомые слова, не изменялся за время выполнения запросов.

Решение:

При помощи кругов Эйлера изобразим условия задачи. При этом цифры 1, 2 и 3 используем, чтобы обозначить полученные в итоге области.

Опираясь на условия задачи, составим уравнения:

  1. Крейсер | Линкор: 1 + 2 + 3 = 7000
  2. Крейсер: 1 + 2 = 4800
  3. Линкор: 2 + 3 = 4500

Чтобы найти Крейсер & Линкор (обозначенный на чертеже как область 2), подставим уравнение (2) в уравнение (1) и выясним, что:

4800 + 3 = 7000, откуда получаем 3 = 2200.

Теперь этот результат мы можем подставить в уравнение (3) и выяснить, что:

2 + 2200 = 4500, откуда 2 = 2300.

Ответ: 2300 - количество страниц, найденных по запросу Крейсер & Линкор.

Как видите, круги Эйлера помогают быстро и просто решить даже достаточно сложные или просто запутанные на первый взгляд задачи.

Заключение

Полагаю, нам удалось убедить вас, что круги Эйлера – не просто занимательная и интересная штука, но и весьма полезный метод решения задач. Причем не только абстрактных задач на школьный уроках, но и вполне себе житейских проблем. Выбора будущей профессии, например.

Вам еще наверняка будет любопытно узнать, что в современной массовой культуре круги Эйлера нашли отражение не только в виде мемов, но и в популярных сериалах. Таких, как «Теория большого взрыва» и «4исла».

Используйте это полезный и наглядный метод для решения задач. И обязательно расскажите о нем друзьям и одноклассникам. Для этого под статьей есть специальные кнопки.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Круги Эйлера - одна из самых простых тем, которые необходимы Вам для поступления в 5 класс физико-математических лицеев . На самом деле, круги Эйлера - это ни что иное, как графическое представление множеств. Объекты, обладающие определённым свойством находятся внутри круга Эйлера-Венна , не обладающие - находятся вне. Разумеется, обычно на диаграмме присутствует не один круг, а несколько, каждый из которых объединяет объекты с каким-то своим свойством. Любая задача из данного блока сводится к тому, что необходимо посчитать количество элементов в какой-либо области. Разберём на примерах, что же надо делать:

Задачи на множества людей

В классе учится учеников. изучают английский, немецкий и французский. Ни одного языка не знают человека. Также известно, что из всех ребят только один мальчик изучает языка: английский и французский. Сколько человек изучает языка?

Для решения задачи обозначим количество искомых учеников за (тех, кто изучает языка). Количество учеников, изучающих другое количество языков выразим через и условия в задаче. Диаграмма Эйлера-Венна в данном случае будет выглядеть следующим образом: Например, ребята, которые знают только английский язык, обозначены красным цветом и их количество .

Заметим, что у нас никак не использовано общее количество учеников - это условие и породит то самое уравнение, с помощью которого решится задача:





Получается, что все языка изучают человек (Можете теперь, зная , самостоятельно восстановить сколько каких учеников было в классе и проверить ответ)

Задачи на делимость (сложная делимость)

Это задачи уже повышенной сложности. Предварительно советуем изучить тему . Обязательно к прочтению только тем, кто собирается занимать призовые места.

Для скольких чисел между и верно следующее утверждение: число делится на или не делится на ?

Такое страшное и непонятное условие становится простым, если воспользоваться кругами Эйлера . Понятно, что в этой задаче рассматриваются числа, которые - нас интересуют те, что внутри соответствующего круга. Также есть числа, которые vdots 12 - нас интересуют числа, которые вне. А что же с числами, которые принадлежат обоим множествам? Во-первых, каким общим свойством они обладают, а во-вторых, интересуют ли они нас?

Сначала ответим на первый вопрос. Оказывается, если число одновременно делится на два других числа, то оно делится на Наименьшее Общее Кратное этих двух чисел, то есть на минимальное число, которое делится без остатка на оба исследуемых. Для чисел и НОК есть ничто иное, как число , так как и , а меньше числа с такими свойствам нет. Итого, в пересечении наших множеств лежат числа, которые .

Далее необходимо заметить, что в условии употреблено слово "ИЛИ" . Это значит, что для искомых чисел должно быть верно ХОТЯ БЫ ОДНО из предложенных утверждений (возможно и оба). То есть нам подходят числа которые внутри круга чисел, которые , а также все числа, которые вне круга .

Итак, диаграмма Эйлера-Венна выглядит следующим образом: Штриховкой обозначены те числа, которые и надо найти. Теперь, надеюсь, очевидно, что нам необходимо найти, сколько всего числе в рассматриваемой задаче, из этого количества вычесть количество чисел, которые и прибавить количество чисел, которые .

Итак, приступим:


Получается, что искомых чисел

Итак, подведём итог. Если Вы собираетесь поступать в 5 класс физико-математического лицея , то общие знания по кругам Эйлера-Венна Вам необходимы. Основная область применения - задачи, где присутствуют множества объектов, обладающих определёнными свойствами, и необходимо найти количество объектов обладающих (или не обладающих) совокупностью указанных свойств.



Похожие статьи