Метод сечений при определении усилий. Внутренние силы

Задачи и методы сопротивления материалов

Сопротивление материалов – наука об инженерных методах расчета на прочность, жесткость и устойчивость конструкций, сооружений, машин и механизмов.

Прочность – способность конструкции, ее частей и деталей выдерживать определенную нагрузку не разрушаясь.

Жесткость - способность конструкции и ее элементов сопротивляться деформации (изменению формы и размеров).

Устойчивость - способность конструкции и ее элементов сохранять определенную начальную форму упругого равновесия.

Для того чтобы конструкции в целом отвечали требованиям прочности, жесткости и устойчивости, необходимо придать их элементам наиболее рациональную форму и определить соответствующие размеры. Сопротивление материалов решает указанные задачи, основываясь на теоретических и опытных данных.

В сопротивлении материалов широко применяются методы теоретической механики и математического анализа, используются данные из разделов физики, изучающих свойства различных материалов, материаловедения и других наук. К тому же сопротивление материалов является наукой экспериментально-теоретической, так как она широко использует опытные данные и теоретические исследования.

Модели прочностной надежности

Оценка прочностной надежности элемента конструкции начинается с выбора расчетной модели (схемы). Моделью называют совокупность представлений, условий и зависимостей, описывающих объект, явление.

Модели материала.

В расчетах прочностной надежности материал детали представляют однородной сплошной средой, что позволяет рассматривать тело как непрерывную среду и применять методы математического анализа.

Под однородностью материал понимают независимость его свойств от размеров выделенного объема.

Расчетная модель материала наделяется такими физическими свойствами, как упругость, пластичность и ползучесть.

Упругость – свойство тела (детали) восстанавливать свою форму после снятия внешней нагрузки.

Пластичность – свойство тела сохранять после разгрузки полностью или частично деформацию, полученную при нагружении.

Ползучесть – свойство тела увеличивать со временем деформацию при действии внешних сил.

Модели формы.

Конструкции имеют в большинстве случаев сложную форму, отдельные элементы которой можно свести к основным типам:

1. Стержнем или брусом называют тело, у которого два размера малы по сравнению с третьим.

Стержни могут быть с прямолинейными и криволинейными осями, а также постоянного или переменного сечения.

К прямым стержням относятся балки, оси, валы; к кривым – грузоподъемные крюки, звенья цепей и т.п.

2. Оболочка – тело, ограниченное двумя криволинейными поверхностями, расстояние между которыми мало по сравнению с прочими размерами.

Оболочки бывают цилиндрические, конические, сферические. К оболочкам относятся тонкостенные резервуары, котлы, купола зданий, корпуса судов, обшивки фюзеляжей, крыльев и т.п.

3. Пластина - тело, ограниченное двумя плоскими или слабоизогнутыми поверхностями, имеющее малую толщину.

Пластинами являются плоские днища и крышки резервуаров, перекрытия инженерных сооружений и т.п.

4. Массив или массивное тело – тело, у которого все три размера одного порядка.

Относятся: фундаменты сооружений, подпорные стенки и т.п.

Модели нагружения.

Силы являются мерой механического взаимодействия элементов конструкций. Силы бывают внешние и внутренние.

Внешние силы – это силы взаимодействия между рассматриваемым элементом конструкции и связанными с ним телами.

Внешние силы бывают объемными и поверхностными.

Объемные силы – это силы инерции и силы тяжести. Они действуют на каждый бесконечно малый элемент объема.

Поверхностные силы обнаруживаются при контактном взаимодействии данного тела с другими телами.

Поверхностные силы бывают сосредоточенными и распределенными.

Р – сосредоточенная сила, Н. Она действует на небольшую часть поверхности тела.

q – интенсивность распределенной нагрузки, Н/м.

Внешние силы могут быть представлены в виде сосредоточенного момента М (Н·м) или распределенного момента m (Н·м/м).

По характеру изменения во времени нагрузки подразделяют на статические и переменные.

Статической называют нагрузку, которая медленно возрастает от нуля до своего номинального значения и остается постоянной в процессе работы детали.

Переменной называют нагрузку, периодически меняющуюся во времени.

Модели разрушения.

Моделям нагружения соответствуют модели разрушения – уравнения (условия), связывающие параметры работоспособности элемента конструкции в момент разрушения с параметрами, обеспечивающими прочность.

В зависимости от условий нагружения рассматривают модели разрушения: статического , малоциклового и усталостного (многоциклового).

Внутренние силы. Метод сечений

Взаимодействие между частями (частицами) внутри элемента конструкции характеризуется внутренними силами.

Внутренние силы представляют собой силы межатомного взаимодействия (связей), возникающие при воздействии на тело внешних нагрузок.

Практика показывает, что внутренние силы определяют прочностную надежность детали (тела).

Для нахождения внутренних сил используют метод сечений . Для этого мысленно рассекают тело на две части, одну часть отбрасывают, другую рассматривают совместно с внешними силами. Внутренние силы распределены по сечению некоторым сложным образом. Поэтому систему внутренних сил приводят к центру тяжести сечения, чтобы можно было определить главный вектор и главный момент М внутренних сил, действующих по сечению. Затем раскладываем главный вектор и главный момент на составляющие по трем осям и получаем внутренние силовые факторы сечения: составляющая N z называется нормальной , или продольной си­лой в сечении, силы Q x и Q y называются поперечными силами , момент M z (или M к ) называется крутящим моментом , а моменты M х и M y - изгибающими моментами относительно осей х и y , соответственно.

Таким образом, если внешние силы заданы, то внутренние силовые факторы вычисляются как алгебраические суммы проекций сил и моментов, действующих на мысленно отсеченную часть тела.

После определения числовых значений внутренних сил строят эпюры – графики (диаграммы), показывающие как изменяются внутренние силы при переходе от сечения к сечению.

Для расчетов деталей машин и сооружений на прочность необходимо знать внутренние силы упругости, возникающие в результате действия приложенных к деталям внешних сил.

В теоретической механике мы познакомились с понятием метода сечений. Этот метод широко применяется в сопротивлении материалов для определения внутренних сил, поэтому рассмотрим его подробно. Напомним, что всякое тело, в том числе деталь машины или сооружения, можно полагать системой материальных точек.

В теоретической механике имеют дело с неизменяемыми системами; в сопротивлении материалов рассматриваются изменяемые (деформируемые) системы материальных точек.

Метод сечений заключается в том, что тело мысленно рассекается плоскостью на две части, любая из которых отбрасывается, а взамен нее к сечению оставшейся части прикладываются внутренние силы, действовавшие до разреза. Оставленная часть рассматривается как самостоятельное тело, находящееся в равновесии под действием внешних и приложенных к сечению внутренних сил.

Очевидно, что, согласно третьему закону Ньютона (аксиома взаимодействия), внутренние силы, действующие в сечении оставшейся и отброшенной частей тела, равны по модулю, но противоположны по направлению. Поэтому, рассматривая равновесие любой из двух частей рассеченного тела, мы получим одно и то же значение внутренних сил, однако выгоднее рассматривать ту часть тела, для которой уравнения равновесия проще.

В соответствии с принятым допущением о непрерывности материала тела мы можем утверждать, что внутренние силы, возникающие в теле, представляют собой силы, равномерно или неравномерно распределенные по сечению.

Применяя к оставленной части тела условия равновесия, мы не сможем найти закон распределения внутренних сил по сечению, но сможем определить статические эквиваленты этих сил.

Так как основным расчетным объектом в сопротивлении материалов является брус и чаще всего нас будут интересовать внутренние силы в его поперечном сечении, то рассмотрим, каковы будут статические эквиваленты внутренних сил в поперечном сечении бруса.

Рассечем брус (рис. 1.3) поперечным сечением а - а и рассмотрим равновесие его левой части.

Рис. 1.3

Если внешние силы, действующие на брус, лежат в одной плоскости, то в общем случае статическим эквивалентом внутренних сил, действующих в сечении а - а, будут главный вектор F m , приложенный в центре тяжести сечения, и главный момент М ТЛ - М И, уравновешивающие плоскую систему внешних сил, приложенных к оставленной части бруса.

Разложим главный вектор на составляющую N, направленную вдоль оси бруса, и составляющую Q, перпендикулярную этой оси, то есть лежащую в плоскости поперечного сечения. Эти составляющие главного вектора вместе с главным моментом назовем внутренними силовыми факторами, действующими в сечении бруса. Составляющую N назовем продольной силой , составляющую Q - поперечной силой , а пару сил с моментом М к - изгибающим моментом.

Для определения указанных трех внутренних силовых факторов статика дает три уравнения равновесия оставленной части бруса, а именно:

(ось z всегда направляем по оси бруса).

Если внешние силы, действующие на брус, не лежат в одной плоскости, то есть представляют собой пространственную систему сил, то в общем случае в поперечном сечении бруса возникают шесть внутренних силовых факторов (рис. 1.4), для определения которых статика дает шесть уравнений равновесия оставленной части бруса, а именно:


Рис. 1.4

Шесть внутренних силовых факторов, возникающих в поперечном сечении бруса в самом общем случае, носят следующие названия: N - продольная сила, Q x , Q y - поперечные силы, М к - крутящий момент, М ш, М иу - изгибающие моменты.

При разных деформациях в поперечном сечении бруса возникают различные внутренние силовые факторы. Рассмотрим частные случаи.

  • 1. В сечении возникает только продольная сила N. В таком случае это деформация растяжения (если сила N направлена от сечения) или деформация сжатия (если сила N направлена к сечению).
  • 2. В сечении возникает только поперечная сила Q. В таком случае это деформация сдвига.
  • 3. В сечении возникает только крутящий момент М к. В таком случае это деформация кручения.
  • 4. В сечении возникает только изгибающий момент М н. В таком случае это деформация чистого изгиба. Если в сечении одновременно возникает изгибающий момент М н и поперечная сила Q, то изгиб называют поперечным.
  • 5. В сечении одновременно возникает несколько внутренних силовых факторов (например, изгибающий и крутящий моменты или изгибаюший момент и продольная сила). В этих случаях имеет место сочетание основных деформаций.

Наряду с понятием деформации одним из основных понятий сопротивления материалов является напряжение. Напряжение характеризует интенсивность внутренних сил, действующих в сечении.

Рассмотрим какой-либо произвольно нагруженный брус и применим к нему метод сечений (рис. 1.5). Выделим в сечении бесконечно малый элемент площади dA (что мы имеем право делать, так как считаем материал непрерывным). Ввиду малости этого элемента можно считать, что в его пределах внутренние силы, приложенные в различных точках, одинаковы по модулю и направлению и, следовательно, представляют собой систему параллельных сил. Равнодействующую этой системы обозначим dF. Разделив dF на площадь элементарной площадки dA, определим интенсивность внутренних сил, то есть напряжение р в точках элементарной площадки dA:

Рис. 1.5

Таким образом, напряжение есть внутренняя сила, отнесенная к единице площади сечения. Напряжение есть величина векторная. Единица напряжения:

Поскольку эта единица напряжения очень мала, то мы будем применять более крупную кратную единицу, а именно мегапаскаль (МПа): 1 МПа = 10 6 Па = 1 Н/мм 2 . Таким образом, числовые значения напряжения, выраженного в МПа и Н/мм 2 , совпадают.

Разложим вектор напряжения р на две составляющие: о - перпендикулярную плоскости сечения и т - лежащую в плоскости сечения (рис. 1.5). Эти составляющие назовем соответственно нормальным (а) и касательным (т) напряжением.

Так как угол между нормальным и касательным напряжениями всегда равен 90°, то модуль полного напряженияр определится по формуле

Разложение полного напряжения на нормальное и касательное имеет вполне определенный физический смысл. Как мы убедимся в дальнейшем, в поперечном сечении бруса при растяжении, сжатии и чистом изгибе действуют только нормальные напряжения, а при сдвиге и кручении - только касательные напряжения.

В заключение настоящей главы рассмотрим гипотезу, которая носит название принцип независимости действия сил и формулируется так: при действии на тело нескольких нагрузок внутренние силы, напряжения, перемещения и деформации в любом месте могут быть определены как сумма этих величин, найденных от каждой нагрузки в отдельности.

Пользуясь принципом независимости действия сил, мы, начав с изучения простейших основных деформаций, когда в поперечных сечениях бруса действуют только нормальные или только касательные напряжения, в дальнейшем перейдем к изучению более сложных основных деформаций, когда в поперечном сечении действуют и те и другие напряжения, а затем рассмотрим случаи сочетания основных деформаций, что иногда называют сложным сопротивлением.

Заметим, что принцип независимости действия сил применим только для конструкций, деформации которых малы по сравнению с размерами и пропорциональны действующим нагрузкам.

Метод сечений и внутренние силовые факторы (ВСФ)

Прочность твердого тела обусловлена силами сцепления между отдельными его частицами (атомами, молекулами и т. п.). В случае нагружения твердого тела внешней нагрузкой (активными и реактивными силами) внутренние силы сцепления изменяются. При этом появляются дополнительные внутренние силы, сопровождающие деформацию тела. Именно эти дополнительные внутренние силы и являются предметом изучения в курсе сопротивления материалов. По мере возрастания внешней нагрузки увеличиваются и внутренние силы, но лишь до определенного предела, при превышении которого наступает разрушение.

Для решения задач сопротивления материалов очень важно уметь определять внутренние силы и деформации стержня. При определении внутренних сил в каком-либо сечении стержня используют метод сечений.

Рассмотрим на конкретном примере сущность метода сечений. Возьмем стержень, находящийся в состоянии равновесия под действием сил Ft, F 2 , F } и F 4 (рис. 3,а). Для определения внутренних сил, действующих в произвольном сечении А, мысленно рассечем стержень и отбросим одну из двух полученных частей, например, правую. Тогда на оставшуюся левую часть стержня будут действовать внешние силы F и F 2 .

Рис. 3. Метод сечений: а) стержень, рассеченный плоскостью;

б) левая отсеченная часть стержня

Для того чтобы эта часть стержня оставалась в равновесии, следует действие отброшенной правой части стержня на оставшуюся левую часть заменить внутренними силами, приложенными по всему сечению (рис. 3, б).

Являясь внутренними силами для целого стержня, эти силы играют роль внешних сил для его левой части.

NB: в дальнейшем силы, возникающие в сечении, будем называть внутренними и в то же время на рисунках изображать их в виде внешних сил.

Распределенные по сечению внутренние силы образуют пространственную систему сил и приводятся к статически эквивалентным им обобщенным усилиям - главному вектору и главному моменту М гл (рис. 4, а).

В сопротивлении материалов, характеризуя усилия в стержне, обычно рассматривают поперечные сечения, а обобщенные усилия представляют в главной координатной системе (при этом ось z направляют по нормали к сечению, а оси х и у располагают в плоскости сечения).

Проецируя главный вектор /? г, на оси координат, получаем три его составляющие: N y Q y и Q x . Проекциями главного момента на координатные оси являются его составляющие: моменты М х, М у и Г, каждый из которых стремится повернуть отсеченную часть стержня вокруг одной из координатных осей. Эти составляющие главного вектора и главного момента на координатные оси называют внутренними силовыми факторами (рис. 4, б).


Рис. 4. Метод сечений: а) приведение системы внутренних сил в сечении к главному вектору и главному моменту; б) разложение главного вектора и главного момента на координатные оси

Внутренними силовыми факторами называются проекции главного вектора и главного момента всех внутренних сил, возникающих в поперечном сечении стержня, на главные координаты оси, помещаемые обычно в центр тяжести сечения.

В общем случае нагружения стержня в его поперечном сечении могут возникать шесть внутренних силовых факторов , которые имеют следующие названия:

S N - продольная (нормальная) сила;

S QyUQ x - поперечные силы;

S М Х 1 Л М у - изгибающие моменты;

S Т - крутящий момент.

При известных внешних силах все шесть внутренних силовых факторов могут быть определены из шести уравнений статики (уравнений равновесия), которые составляются для отсеченной части стержня (правой или левой):

NB: в приведенных условиях равновесия отсеченной части стержня символами F x omc , F y omc и F z ome обозначены проекции внешних сил на соответствующие координатные оси; а символом F° mc - внешние силы.

Рассмотренный метод сечений позволяет перевести внутренние силовые факторы в категорию внешних сил и, подчинив условиям равновесия, определить их величины и направления.

Сущность метода сечений заключается в следующих четырех действиях:

  • 1. Рассечь мысленно стержень плоскостью, перпендикулярной его оси в том месте, где требуется найти внутренние силовые факторы (см. рис. 3, а).
  • 2. Отбросить одну из частей стержня (правую или левую).
  • 3. Заменить действие отброшенной части стержня на оставленную часть искомыми внутренними силовыми факторами (см. рис. 4, б). Равновесие оставленной части не нарушится лишь в том случае, если к ней приложить ВСФ, заменяющие действие отброшенной части. Для оставленной части они будут играть роль внешних сил (см. рис. 3, б).
  • 4. Уравновесить оставленную часть стержня и из условий равновесия оставленной части стержня найти величины и направления внутренних силовых факторов.

От степени усвоения метода сечений зависит успешное изучение и понимание основных вопросов сопротивления материалов. Добиться этого несложно, если при применении метода сечений каждый раз последовательно использовать все четыре указанные операции. При этом следует помнить, что пропуск какой-либо из этих операций неизбежно приведет к ошибкам и недопониманию изучаемого вопроса.

При применении метода сечений должны быть предварительно определены все внешние силы и моменты, приложенные к отсеченной части стержня, в том числе и опорные реакции. Оставленная часть стержня должна рассматриваться как свободное тело, находящееся под действием приложенных к нему внешних сил, моментов и внутренних силовых факторов, не изменяющее своего положения в пространстве (опоры отсутствуют, так как их действия заменены опорными реакциями).

МЕТОД СЕЧЕНИЙ метод строительной механики, заключающийся в мысленном рассечении плоскостью твёрдого тела, находящегося в равновесии, отбрасывании одной из его частей и уравновешивании внешних сил, действующих на оставшуюся часть, внутренними усилиями, которые определяют из условий равновесия этой части

(Болгарский язык; Български) - метод чрез сечения

(Чешский язык; Čeština) - průsečná metoda

(Немецкий язык; Deutsch) - Schnittverfahren

(Венгерский язык; Magyar) - átmetszés módszere

(Монгольский язык) - огтлолын арга

(Польский язык; Polska) - metoda przekrojów

(Румынский язык; Român) - metoda secţiunilor

(Сербско-хорватский язык; Српски језик; Hrvatski jezik) - metod preseka

(Испанский язык; Español) - metodo de las secciones

(Английский язык; English) - method of sections

(Французский язык; Français) - méthode des coupes

Строительный словарь .

Смотреть что такое "МЕТОД СЕЧЕНИЙ" в других словарях:

    метод сечений - Метод строительной механики, заключающийся в мысленном рассечении плоскостью твёрдого тела, находящегося в равновесии, отбрасывании одной из его частей и уравновешивании внешних сил, действующих на оставшуюся часть, внутренними усилиями, которые… …

    Метод сечений - – метод строительной механики, заключающийся в мысленном рассечении плоскостью твёрдого тела, находящегося в равновесии, отбрасывании одной из его частей и уравновешивании внешних сил, действующих на оставшуюся часть, внутренними усилиями,… … Энциклопедия терминов, определений и пояснений строительных материалов

    Метод неделимых возникшее в конце XVI в. наименование совокупности довольно разнородных приёмов вычисления площадей или объёмов фигур. Формализация этих приёмов во многом определила развитие интегрального исчисления. Содержание 1 Идея… … Википедия

    метод - метод: Метод косвенного измерения влажности веществ, основанный на зависимости диэлектрической проницаемости этих веществ от их влажности. Источник: РМГ 75 2004: Государственная система обеспечения еди …

    метод двух сечений - Метод измерения, в котором значение расходимости пучка лазерного излучения определяют из отношения разности диаметров двух сечений лазерного пучка, расположенных в дальней зоне и изменяемых при определенном уровне энергии излучения, к расстоянию… … Справочник технического переводчика

    Способ подсчета запасов твердых полезных ископаемых, при котором объем блока между двумя сечениями (горизонтальными или вертикальными) определяется по формулам: 1) 2) 3) где S1 и S2 площади сечений; l расстояние между сечениями; α угол между … Геологическая энциклопедия

    метод ключевых слов - метод предметных сечений — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы метод предметных сечений EN subject profile method … Справочник технического переводчика

    Метод двух сечений - 53. Метод двух сечений Метод измерения, в котором значение расходимости пучка лазерного излучения определяют из отношения разности диаметров двух сечений лазерного пучка, расположенных в дальней зоне и изменяемых при определенном уровне энергии… … Словарь-справочник терминов нормативно-технической документации

    Метод неделимых возникшее в конце XVI в. наименование совокупности довольно разнородных приёмов вычисления площадей или объёмов фигур. Содержание 1 Идея метода 2 Примеры применения метода неделимых … Википедия

    - (комплексных угловых моментов метод), в квант. механике и в квант. теории поля (КТП) метод описания и исследования рассеяния элем. ч ц, основанный на формальном аналитич. продолжении парциальных амплитуд из области физ. значений момента кол ва… … Физическая энциклопедия

Книги

  • Сопротивление материалов. Том 5. Учебное пособие , И. В. Богомаз, Т. П. Мартынова, В. В. Москвичев. Материал учебного пособия представлен в соответствии с государственным образовательным стандартом высшего профессионального образования по подготовке дипломированного специалиста по…

Этапы определения внутренних сил: 1. Рассекаем изучаемый стержень мысленно плоскостью на две части (рис. В.5). Каждая из частей предполагается находящейся в равновесии под действием внешних сил, приложенных к этой части, и внутренних сил, возникающих в сечении и представляющих собой силы взаимодействия между оставшейся и отброшенной частями. Равнодействующая внутренних сил в сечении называется усилием, а величина внутренней силы, приходящейся на единицу площади сечения, называется напряжением в данной точке сечения. Напряжение может быть выражено через усилие. Рис. В.5 2. Отбросим одну из частей стержня, например левую, и исследуем усилия в сечении оставшейся (правой) части (рис. В.5). Обычно отбрасывают ту часть, на которую действует большее количество сил, что упрощает расчет. 3. Заменяем действие отброшенной части тела на оставшуюся внутренними силами. Приведя внутренние силы, действующие в данном сечении, к центру тяжести сечения, получим главный вектор RВН и главный момент МВН внутренних сил упругости. Раскладывая главный вектор и главный момент на составляющие по координатным осям, получим шесть внутренних силовых факторов (усилий) NX , Qу, QZ , MX , Mу, MZ (рис. В.6). Рис. В.6 11 Составляющими главного вектора R являются: NX – продольная сила; Qy , QZ – поперечные силы; Составляющими главного момента М являются: МХ – крутящий момент, в дальнейшем обозначающийся МК; Му, МZ – изгибающие моменты. Оси У, Z рассматриваются как главные центральные оси поперечного сечения. Заметим, что в том же сечении левой части будут те же усилия, но имеющие противоположное направление. 4. Уравновешиваем оставшуюся правую часть тела (рис. В.6). Для каждой части стержня должны быть выполнены шесть условий равновесия: Из рассмотрения этих уравнений находим внутренние усилия (NX , Qy , QZ , МХ, Му, МZ). Каждому из этих силовых факторов соответствует свой вид деформации. Продольная сила (N) вызывает растяжение (сжатие), поперечная сила Q – сдвиг, крутящий момент (МК) – кручение, изгибающие моменты (МZ , Му) – изгиб. Итак, под действием внешних сил в теле возникают внутренние силы, сопровождающие деформацию тел и связанные с ними нормальные () и касательные () напряжения. Этим двум видам напряжений соответствуют два вида разрушения элементов конструкций путем отрыва или взаимного сжатия частиц в точке тела и путем сдвига частиц. Зная величины напряжений, которые возникают в элементах конструкции, и те напряжения, которые выдерживает материал (предел прочности в), можно судить о прочности элементов и в целом конструкции. Для обеспечения надежной работы конструкции необходимо, чтобы фактические напряжения, возникающие в элементах конструкции, не превосходили допускаемых нормальных напряжений и касательных напряжений . Допускаемые напряжения составляют некоторую часть от предельных напряжений и гарантируют безопасную работу конструкции и ее элементов на весь период эксплуатации. Для пластичных материалов за опасное напряжение принимается предел текучести Т, а для хрупких предел прочности – В. Допускаемые нормальные напряжения и касательные напряжения зависят от материала, из которого изготовляют элементы конструкции, степени ответственности и назначения конструкции, технологических, конструктивных и других факторов. В инженерной практике используется три вида расчета на прочность: 1) по допускаемым напряжениям; 2) разрушающим нагрузкам; 3) предельным состояниям.



Похожие статьи