Симплексный метод решения задач линейного программирования. Пример — Табличный симплекс метод Симплекс метод программа что делать с числом

Данный метод является методом целенаправленного перебора опорных решений задачи линейного программирования. Он позволяет за конечное число шагов либо найти оптимальное решение, либо установить, что оптимальное решение отсутствует.

Основное содержание симплексного метода заключается в следующем:
  1. Указать способ нахождения оптимального опорного решения
  2. Указать способ перехода от одного опорного решения к другому, на котором значение целевой функции будет ближе к оптимальному, т.е. указать способ улучшения опорного решения
  3. Задать критерии, которые позволяют своевременно прекратить перебор опорных решений на оптимальном решении или следать заключение об отсутствии оптимального решения.

Алгоритм симплексного метода решения задач линейного программирования

Для того, чтобы решить задачу симплексным методом необходимо выполнить следующее:
  1. Привести задачу к каноническому виду
  2. Найти начальное опорное решение с "единичным базисом" (если опорное решение отсутствует, то задача не имеет решение ввиду несовместимости системы ограничений)
  3. Вычислить оценки разложений векторов по базису опорного решения и заполнить таблицу симплексного метода
  4. Если выполняется признак единственности оптимального решения, то решение задачи заканчивается
  5. Если выполняется условие существования множества оптимальных решений, то путем простого перебора находят все оптимальные решения

Пример решения задачи симплексным методом

Пример 26.1

Решить симплексным методом задачу:

Решение:

Приводим задачу к каноническому виду.

Для этого в левую часть первого ограничения-неравенства вводим дополнительную переменную x 6 с коэффициентом +1. В целевую функцию переменная x 6 входит с коэффицентом ноль (т.е. не входит).

Получаем:

Находим начальное опорное решение. Для этого свободные (неразрешенные) переменные приравниваем к нулю х1 = х2 = х3 = 0.

Получаем опорное решение Х1 = (0,0,0,24,30,6) с единичным базисом Б1 = (А4, А5, А6).

Вычисляем оценки разложений векторов условий по базису опорного решения по формуле:

Δ k = C б X k — c k

  • C б = (с 1 , с 2 , ... , с m) — вектор коэффициентов целевой функции при базисных переменных
  • X k = (x 1k , x 2k , ... , x mk) — вектор разложения соответствующего вектора А к по базису опорного решения
  • С к — коэффициент целевой функции при переменной х к.

Оценки векторов входящих в базис всегда равны нулю. Опорное решение, коэффиценты разложений и оценки разложений векторов условий по базису опорного решения записываются в симплексную таблицу :

Сверху над таблицей для удобства вычислений оценок записываются коэффициенты целевой функции. В первом столбце "Б" записываются векторы, входящие в базис опорного решения. Порядок записи этих векторов соответствует номерам разрешенных неизвестных в уравнениях ограничениях. Во втором столбце таблицы "С б " записываются коэффициенты целевой функции при базисных переменных в том же порядке. При правильном расположении коэффициентов целевой функции в столбце "С б " оценки единичных векторов, входящих в базис, всегда равных нулю.

В последней строке таблицы с оценками Δ k в столбце "А 0 " записываются значения целевой функции на опорном решении Z(X 1).

Начальное опорное решение не является оптимальным, так как в задаче на максимум оценки Δ 1 = -2, Δ 3 = -9 для векторов А 1 и А 3 отрицательные.

По теореме об улучшении опорного решения, если в задаче на максимум хотя бы один вектор имеет отрицательную оценку, то можно найти новое опорное решение, на котором значение целевой функции будет больше.

Определим, введение какого из двух векторов приведет к большему приращению целевой функции.

Приращение целевой функции находится по формуле: .

Вычисляем значения параметра θ 01 для первого и третьего столбцов по формуле:

Получаем θ 01 = 6 при l = 1, θ 03 = 3 при l = 1 (таблица 26.1).

Находим приращение целевой функции при введении в базис первого вектора ΔZ 1 = — 6*(- 2) = 12, и третьего вектора ΔZ 3 = — 3*(- 9) = 27.

Следовательно, для более быстрого приближения к оптимальному решению необходимо ввести в базис опорного решения вектор А3 вместо первого вектора базиса А6, так как минимум параметра θ 03 достигается в первой строке (l = 1).

Производим преобразование Жордана с элементом Х13 = 2, получаем второе опорное решение Х2 = (0,0,3,21,42,0) с базисом Б2 = (А3, А4, А5). (таблица 26.2)

Это решение не является оптимальным, так как вектор А2 имеет отрицательную оценку Δ2 = — 6. Для улучшение решения необходимо ввести вектор А2 в базис опорного решения.

Определяем номер вектора, выводимого из базиса. Для этого вычисляем параметр θ 02 для второго столбца, он равен 7 при l = 2. Следовательно, из базиса выводим второй вектор базиса А4. Производим преобразование Жордана с элементом х 22 = 3, получаем третье опорное решение Х3 = (0,7,10,0,63,0) Б2 = (А3, А2, А5) (таблица 26.3).

Это решение является единственным оптимальным, так как для всех векторов, не входящих в базис оценки положительные

Δ 1 = 7/2, Δ 4 = 2, Δ 6 = 7/2.

Ответ: max Z(X) = 201 при Х = (0,7,10,0,63).

Метод линейного программирования в экономическом анализе

Метод линейного программирования дает возможность обосновать наиболее оптимальное экономическое решение в условиях жестких ограничений, относящихся к используемым в производстве ресурсам (основные фонды, материалы, трудовые ресурсы). Применение этого метода в экономическом анализе позволяет решать задачи, связанные главным образом с планированием деятельности организации. Данный метод помогает определить оптимальные величины выпуска продукции, а также направления наиболее эффективного использования имеющихся в распоряжении организации производственных ресурсов.

При помощи этого метода осуществляется решение так называемых экстремальных задач, которое заключается в нахождении крайних значений, то есть максимума и минимума функций переменных величин.

Этот период базируется на решении системы линейных уравнений в тех случаях, когда анализируемые экономические явления связаны линейной, строго функциональной зависимостью. Метод линейного программирования используется для анализа переменных величин при наличии определенных ограничивающих факторов.

Весьма распространено решение так называемой транспортной задачи с помощью метода линейного программирования. Содержание этой задачи заключается в минимизации затрат, осуществляемых в связи с эксплуатацией транспортных средств в условиях имеющихся ограничений в отношении количества транспортных средств, их грузоподъемности, продолжительности времени их работы, при наличии необходимости обслуживания максимального количества заказчиков.

Кроме этого, данный метод находит широкое применение при решении задачи составления расписания. Эта задача состоит в таком распределении времени функционирования персонала данной организации, которое являлось бы наиболее приемлемым как для членов этого персонала, так и для клиентов организации.

Данная задача заключается в максимизации количества обслуживаемых клиентов в условиях ограничений количества имеющихся членов персонала, а также фонда рабочего времени.

Таким образом, метод линейного программирования весьма распространен в анализе размещения и использования различных видов ресурсов, а также в процессе планирования и прогнозирования деятельности организаций.

Все же математическое программирование может применяться и в отношении тех экономических явлений, зависимость между которыми не является линейной. Для этой цели могут быть использованы методы нелинейного, динамического и выпуклого программирования.

Нелинейное программирование опирается на нелинейный характер целевой функции или ограничений, либо и того и другого. Формы целевой функции и неравенств ограничений в этих условиях могут быть различными.

Нелинейное программирование применяется в экономическом анализе в частности, при установлении взаимосвязи между показателями, выражающими эффективность деятельности организации и объемом этой деятельности, структурой затрат на производство, конъюнктурой рынка, и др.

Динамическое программирование базируется на построении дерева решений. Каждый ярус этого дерева служит стадией для определения последствий предыдущего решения и для устранения малоэффективных вариантов этого решения. Таким образом, динамическое программирование имеет многошаговый, многоэтапный характер. Этот вид программирования применяется в экономическом анализе с целью поиска оптимальных вариантов развития организации как в настоящее время, так и в будущем.

Выпуклое программирование представляет собой разновидность нелинейного программирования. Этот вид программирования выражает нелинейный характер зависимости между результатами деятельности организации и осуществляемыми ей затратами. Выпуклое (иначе вогнутое) программирование анализирует выпуклые целевые функции и выпуклые системы ограничений (точки допустимых значений). Выпуклое программирование применяется в анализе хозяйственной деятельности с целью минимизации затрат, а вогнутое — с целью максимизации доходов в условиях имеющихся ограничений действия факторов, влияющих на анализируемые показатели противоположным образом. Следовательно, при рассматриваемых видах программирования выпуклые целевые функции минимизируются, а вогнутые — максимизируются.

x 1

+x 2

+x 3

x 1

+x 2

+x 3

x 1

+x 2

+x 3

≤ = ≥

≤ = ≥

≤ = ≥

×

Предупреждение

Очистить все ячейки?

Закрыть Очистить

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Симплекс метод

Примеры решения ЗЛП симплекс методом

Пример 1. Решить следующую задачу линейного программирования:

Правая часть ограничений системы уравнений имеет вид:

Запишем текущий опорный план:

Данный опорный план не является оптимальным, так как в последней строке есть отрицательные элементы. Самый большой по модулю отрицательный элемент (-3), следовательно в базис входит вектор x при . min (40:6, 28:2)=20/3 соответствует строке 1. Из базиса выходит вектор x 3 . Сделаем исключение Гаусса для столбца x 2 , учитывая, что ведущий элемент соответствует строке 1. Обнулим все элементы этого столбца, кроме ведущего элемента. Для этого сложим строки строки 2, 3, 4 со строкой 1, умноженной на -1/3, 1/6, 1/2, соответственно. Далее делим строку с ведущим элементом на ведущий элемент.

Данный опорный план не является оптимальным, так как в последней строке есть отрицательный элемент (-3), следовательно в базис входит вектор x 1 . Определяем, какой вектор выходит из базиса. Для этого вычисляем при . min(44/3:11/3, 62/3:5/3)=4 соответствует строке 2. Из базиса выходит вектор x 4 . Сделаем исключение Гаусса для столбца x 1 , учитывая, что ведущий элемент соответствует строке 2. Обнулим все элементы этого столбца, кроме ведущего элемента. Для этого сложим строки строки 1, 3, 4 со строкой 2, умноженной на 1/11, -5/11, 9/11, соответственно. Далее делим строку с ведущим элементом на ведущий элемент.

Симплекс таблица примет следующий вид:

Текущий опорный план является оптимальным, так как в строках 4 под переменными нет отрицательных элементов.

Решение можно записать так: .

Значение целевой функции в данной точке: F (X )=.

Пример 2. Найти максимум функции

Р е ш е н и е.

Базисные векторы x 4 , x 3 , следовательно, все элементы в столбцах x 4 , x 3 , ниже горизонтальной линии должны быть нулевыми.

Обнулим все элементы столбца x 4 , кроме ведущего элемента. Для этого сложим строку 3 со строкой 1, умноженной на 4. Обнулим все элементы столбца x 3 , кроме ведущего элемента. Для этого сложим строку 3 со строкой 2, умноженной на 1.

Симплекс таблица примет вид:

Данный опорный план не является оптимальным, так как в последней строке есть отрицательный элемент (-11), следовательно в базис входит вектор x 2 . Определяем, какой вектор выходит из базиса. Для этого вычисляем при . Все следовательно целевая функция неограничена сверху. Т.е. задача линейного программирования неразрешима.

Примеры решения ЗЛП методом искусственного базиса

Пример 1. Найти максимум функции

Р е ш е н и е. Так как количество базисных векторов должен быть 3, то добавляем искусственное переменное, а в целевую функцию добавляем это переменное, умноженное на −M, где M, очень большое число:


Матрица коэффициентов системы уравнений имеет вид:

Базисные векторы следовательно, все элементы в столбцах ниже горизонтальной линии должны быть нулевыми.

Обнулим все элементы столбца кроме ведущего элемента. Для этого сложим строку 5 со строкой 3, умноженной на -1.

Симплекс таблица примет вид:

Данный опорный план не является оптимальным, так как в последней строке есть отрицательные элементы. Самый большой по модулю отрицательный элемент (-5), следовательно в базис входит вектор Определяем, какой вектор выходит из базиса. Для этого вычисляем при соответствует строке 3. Из базиса выходит вектор Сделаем исключение Гаусса для столбца учитывая, что ведущий элемент соответствует строке 3. Обнулим все элементы этого столбца, кроме ведущего элемента. Для этого сложим строки строку 5 со строкой 3, умноженной на 1. Далее делим строку с ведущим элементом на ведущий элемент.

Симплекс таблица примет следующий вид:

Данный опорный план не является оптимальным, так как в последней строке есть отрицательные элементы. Самый большой по модулю отрицательный элемент (-3), следовательно в базис входит вектор Определяем, какой вектор выходит из базиса. Для этого вычисляем при соответствует строке 1. Из базиса выходит вектор x 2 . Сделаем исключение Гаусса для столбца x 1 , учитывая, что ведущий элемент соответствует строке 1. Обнулим все элементы этого столбца, кроме ведущего элемента. Для этого сложим строки строки 2, 3, 4 со строкой 1, умноженной на 3/2, -1/10, 3/2, соответственно. Далее делим строку с ведущим элементом на ведущий элемент.

Симплекс таблица примет следующий вид:

Данный опорный план не является оптимальным, так как в последней строке есть отрицательные элементы. Самый большой по модулю отрицательный элемент (-13/2), следовательно в базис входит вектор x 3 . Определяем, какой вектор выходит из базиса. Для этого вычисляем при соответствует строке 3. Из базиса выходит вектор x 5 . Сделаем исключение Гаусса для столбца x 3 , учитывая, что ведущий элемент соответствует строке 3. Обнулим все элементы этого столбца, кроме ведущего элемента. Для этого сложим строки строки 1, 2, 4 со строкой 3, умноженной на 5/3, 25/9, 65/9, соответственно. Далее делим строку с ведущим элементом на ведущий элемент.

Симплекс таблица примет следующий вид:

Текущий опорный план является оптимальным, так как в строках 4−5 под переменными нет отрицательных элементов.

Решение исходной задачи можно записать так:

Пример 2. Найти оптимальный план задачи линейного программирования:

Матрица коэффициентов системы уравнений имеет вид:

Базисные векторы x 4 , x 5 , x 6 , следовательно, все элементы в столбцах x 4 , x 5 , x 6 , ниже горизонтальной линии должны быть нулевыми.

Обнулим все элементы столбца x 4 , кроме ведущего элемента. Для этого сложим строку 4 со строкой 1, умноженной на -1. Обнулим все элементы столбца x 5 , кроме ведущего элемента. Для этого сложим строку 5 со строкой 2, умноженной на -1. Обнулим все элементы столбца x 6 , кроме ведущего элемента. Для этого сложим строку 5 со строкой 3, умноженной на -1.

Симплекс таблица примет вид:

В строке 5 элементы, соответствующие переменным x 1 , x 2 , x 3 , x 4 , x 5 , x 6 неотрицательны, а число находящийся в пересечении данной строки и столбца x 0 отрицательнo. Тогда исходная задача не имеет опорного плана. Следовательно она неразрешима.

Симплекс метод - это метод последовательного перехода от одного базисного решения (вершины многогранника решений) системы ограничений задачи линейного программирования к другому базисному решению до тех пор, пока функция цели не примет оптимального значения (максимума или минимума).

Симплекс-метод является универсальным методом, которым можно решить любую задачу линейного программирования , в то время, как графический метод пригоден лишь для системы ограничений с двумя переменными.

Симплекс метод был предложен американским математиком Р.Данцигом в 1947 году, с тех пор для нужд промышленности этим методом нередко решаются задачи линейного программирования с тысячами переменных и ограничений.

Перед тем, как перейти к алгоритму симплекс метода, несколько определений .

Всякое неотрицательное решение системы ограничений называется допустимым решением .

Пусть имеется система m ограничений с n переменными (m n).

Допустимым базисным решением является решение, содержащее m неотрицательных основных (базисных ) переменных и n - m неосновных . (небазисных, или свободных ) переменных. Неосновные переменные в базисном решении равны нулю, основные же переменные, как правило, отличны от нуля, то есть являются положительными числами.

Любые m переменных системы m линейных уравнений с n переменными называются основными , если определитель из коэффициентов при них отличен от нуля. Тогда остальные n - m переменных называются неосновными (или свободными ).

Алгоритм симплекс метода

  • Шаг 1 . Привести задачу линейного программирования к канонической форме. Для этого перенести свободные члены в правые части (если среди этих свободных членов окажутся отрицательные, то соответствующее уравнение или неравенство умножить на - 1) и в каждое ограничение ввести дополнительные переменные (со знаком "плюс", если в исходном неравенстве знак "меньше или равно", и со знаком "минус", если "больше или равно").
  • Шаг 2 . Если в полученной системе m уравнений, то m переменных принять за основные, выразить основные переменные через неосновные и найти соответствующее базисное решение. Если найденное базисное решение окажется допустимым, перейти к допустимому базисному решению.
  • Шаг 3 . Выразить функцию цели через неосновные переменные допустимого базисного решения. Если отыскивается максимум (минимум) линейной формы и в её выражении нет неосновных переменных с отрицательными (положительными) коэффициентами, то критерий оптимальности выполнен и полученное базисное решение является оптимальным - решение окончено. Если при нахождении максимума (минимума) линейной формы в её выражении имеется одна или несколько неосновных переменных с отрицательными (положительными) коэффициентами, перейти к новому базисному решению.
  • Шаг 4 . Из неосновных переменных, входящих в линейную форму с отрицательными (положительными) коэффициентами, выбирают ту, которой соответствует наибольший (по модулю) коэффициент, и переводят её в основные. Переход к шагу 2.

Важные условия

В отдельных статьях разобраны некоторые особые случаи: когда максимум целевой функции - бесконечность , когда система не имеет ни одного решения , и когда оптимальное решение - не единственное .

Далее разберём всё же типичный пример, когда система ограничений является совместной и имеется конечный оптимум, причём единственный. Разновидностью симплекс-метода является распределительный метод решения транспортной задачи .

Симплекс метод с симплексными таблицами

Путём построения симплексных таблиц решить задачу линейного программирования намного проще, чем путём алгебраических преобразований, который показан в следующем параграфе. Симплексные таблицы очень наглядны. Существует несколько разновидностей правил работы с симплексными таблицами. Мы разберём правило, которое чаще всего называется правилом ведущего столбца и ведущей строки.

Будет нелишним открыть в новом окне пособие Действия с дробями : их, дробей в задачах на симплекс-метод, мягко говоря, хватает.

Пример.

Вводим добавочные неотрицательные переменные и сводим данную систему неравенств к эквивалентной ей системе уравнений

.

Это было сделано с соблюдением следующего правила: если в первоначальном ограничении знак "меньше или равно", то добавочную переменную нужно прибавлять, а если "больше или равно", то добавочную переменную нужно отнимать.

Введённые добавочные переменные принимаем за основные (базисные). Тогда и - неосновные (свободные) переменные.

Выразив основные (базисные) переменные через неосновные (свободные), получим

Функцию цели также выразим через неосновные (свободные) переменные:

Из коэффициентов при переменных (неизвестных) построим первую симплексную таблицу.

Таблица 1
Базисные неизвестные Свободные члены Свободные неизвестные Вспомогательные коэффициенты
X1 X2
X3 -2 1 -2
X4 -4 -1 -1
X5 2 1 -1
X6 6 0 1
F 0 -1 -2

Последнюю строку таблицы, в которой записаны функция цели и коэффициенты при свободных переменных в ней, будем называть в индексной строкой.

Полученное решение не оптимально, так как в индексной строке коэффициенты при свободных переменных отрицательны. То есть оптимальным будет то решение, в котором коэффициенты при свободных переменных в индексной строке будут больше или равны нулю.

Для перехода к следующей таблице найдём наибольшее (по модулю) из чисел и . Это число 2. Поэтому ведущий столбец - тот столбец, в котором записано

Для определения ведущей строки находим минимум отношений свободных членов к элементам ведущего столбца, причём если в числителе положительное число, а в знаменателе отрицательное, отношение считается равным бесконечности.

.

Поэтому ведущая строка - та, в которой записано

Ведущим элементом, таким образом, является -2.

Составляем вторую симплексную таблицу.

Новый базисный элемент вписываем первой строкой, а столбец, в котором стояло , вписываем новую свободную переменную

Заполняем первую строку. Для этого все числа, стоящие в ведущей строке таблицы 1, делим на ведущий элемент и записываем в соответствующий столбец первой строки таблицы 2, кроме числа, стоящего в ведущем столбце, куда записывается величина, обратная ведущему элементу (то есть, единица, делённая на ведущий элемент).

Заполняем столбец вспомогательных коэффициентов. Для этого числа ведущего столбца таблицы 1, кроме ведущего элемента, записываем с противоположными знаками в графу вспомогательных коэффициентов таблицы 2.

Таблица 2
Базисные неизвестные Свободные члены Свободные неизвестные Вспомогательные коэффициенты
X1 X3
X2 1 -1/2 -1/2
X4 -3 -3/2 -1/2 1
X5 3 1/2 -1/2 1
X6 5 1/2 1/2 -1
F 2 -2 -1 2

Кто ещё не открыл в новом окне пособие Действия с дробями , может сделать это сейчас, поскольку самое время.

Для получения остальных строк таблицы 2 числа, уже стоящие в первой строке этой таблицы, умножаем на вспомогательный коэффициент, стоящий в заполняемой строке, и к результату прибавляем число из таблицы 1, стоящее в той же строке при соответствующей переменной.

Например, для получения свободного члена второй строки число 1 умножаем на 1 и прибавляем из таблицы 1 число -4. Получаем -3. Коэффициент при во второй строке находим так же: . Так как в предыдущей таблице отсутствует столбец с новой свободной переменной , то коэффициент второй строки в столбце новой свободной переменной будет (то есть из таблицы 1 прибавляем 0, так как в таблице 1 столбец с отсутствует).

Так же заполняется и индексная строка:

Полученное таким образом решение вновь не оптимально, так как в индексной строке коэффициенты при свободных переменных вновь отрицательны.

Для перехода к следующей симплексной таблице найдём наибольшее (по модулю) из чисел и , то есть, модулей коэффициентов в индексной строке. Это число 2. Поэтому ведущий столбец - тот столбец, в котором записано .

Для поиска ведущей строки найдём минимум отношений свободных членов к элементам ведущей строки. Получаем:

.

Следовательно, ведущая строка - та, в которой записано , а ведущим элементом является -3/2.

Составляем третью симплексную таблицу

Новую базисную переменную записываем первой строкой. В столбец, в котором было , вписываем новую свободную переменную .

Первая строка:

Вспомогательные коэффициенты:

Таблица 3
Базисные неизвестные Свободные члены Свободные неизвестные Вспомогательные коэффициенты
X4 X3
X1 2 -2/3 1/3
X2 2 -1/3 -1/3 1/2
X5 2 1/3 -2/3 -1/2
X6 4 1/3 1/3 -1/2
F 6 -4/3 -1/3 2

Полученное решение вновь не оптимальное, поскольку коэффициенты при свободных неизвестных в индексной строке вновь отрицательные.

Для перехода к четвёртой симплексной таблице найдём наибольшее из чисел и . Это число .

Следовательно, ведущий столбец - тот, в котором записано .

Минимум модулей отношений свободных членов к элементам ведущего столбца:

.

Поэтому ведущая строка - та, в которой записано , а ведущий элемент 1/3.

В четвёртой симплексной таблице новую базисную переменную записываем первой строкой. В столбец, где было , записываем новую свободную переменную .

Первая строка:

Вспомогательные коэффициенты:

Таблица 4
Базисные неизвестные Свободные члены Свободные неизвестные Вспомогательные коэффициенты
X5 X3
X4 6 3 -2
X1 6 2 -1 2/3
X2 4 1 -1 1/3
X6 2 -1 1 -1/3
F 14 4 -3 4/3

Вычисление остальных строк на примере второй строки:

Полученное решение так же не оптимально, но оно уже лучше предыдущих, так как один из коэффициентов при свободных переменных в индексной строке неотрицателено.

Для улучшения плана перейдём к следующей симплексной таблице.

Найдём наибольшее из чисел 4 и . Это число 4. Следовательно, ведущий столбец .

Для нахождения ведущей строки найдём

.

Следовательно, ведущая строка - та, в которой записано . Но и уже были вместе среди свободных переменных. Поэтому для перевода очередной переменной из свободных в базисные выбираем другой ведущий столбец - тот, в котором записано .

Для нахождения ведущей строки найдём

.

Следовательно, ключевая строка - та, в которой записано , а ведущий элемент 1.

В пятой симплексной таблице новую базисную переменную записываем первой строкой. В столбец, где было , записываем новую свободную переменную .

Первая строка:

Вспомогательные коэффициенты:

Таблица 5
Базисные неизвестные Свободные члены Свободные неизвестные Вспомогательные коэффициенты
X5 X6
X3 2 -1 1
X4 10 2
X1 8 1
X2 6 1
F 20 1 3 3

Попробуем сразу узнать, не является ли решение оптимальным. Поэтому для остальных строк вычислим только свободные члены (чтобы узнать значения базисных переменных при равенстве свободных переменных нулю) и коэффициенты при свободных переменных в индексной строке.

Свободные члены:

Во второй строке ;

В третьей строке ;

В четвёртой строке .

Индексная строка:

Смотрим в симплексную таблицу 5. Видим, что получено оптимальное решение, так как коэффициенты при свободных неизвестных в индексной строке неотрицательны.

Симплекс метод с алгебраическими преобразованиями

Решим алгебраическими преобразованиями тот же пример, что и в предыдущем параграфе. Следует отметить, что при решении этой разновидностью симплекс метода лучше не записывать функцию цели в виде , так как при этом легко запутаться в знаках. Но в этом случае пункт алгоритма, определяющий критерий оптимальности, будет модифицирован следующим образом.

Если отыскивается максимум (минимум) линейной формы и в её выражении нет неосновных переменных с положительными (отрицательными) коэффициентами, то критерий оптимальности выполнен и полученное базисное решение является оптимальным - решение окончено. Если при нахождении максимума (минимума) линейной формы в её выражении имеется одна или несколько неосновных переменных с положительными (отрицательными) коэффициентами, перейти к новому базисному решению.

Пример. Найти максимум функции при ограничениях

Шаг I. Вводим добавочные неотрицательные переменные и сводим данную систему неравенств к эквивалентной ей системе уравнений

.

Введённые добавочные переменные принимаем за основные, так как в этом случае базисное решение системы легко находится. Тогда и - неосновные переменные.

Выразив основные переменные через неосновные, получим

Следовательно, данному разбиению переменных на основные и неосновные соответствует базисное решение , которое является недопустимым (две переменные отрицательны), а поэтому оно не оптимальное. От этого базисного решения перейдём к улучшенному.

Чтобы решить, какую переменную следует перевести из неосновных в основные, рассмотрим любое из двух имеющихся уравнений последней системы с отрицательными свободными членами, например второе. Оно показывает, что в основные переменные можно перевести и , так как в этом уравнении они имеют положительные коэффициенты (следовательно, при их увеличении, а это произойдёт, если переведём любую из них в основные переменные, переменная увеличится).

Попробуем перевести в основные переменную . Чтобы установить, какую переменную следует перевести из основные в неосновные, найдём абсолютную величину наименьшего отношения свободных членов системы к коэффициентам при . Имеем . Оно получено из третьего уравнения, показывающего, что в неосновные нужно перевести переменную , которая в исходном базисном решении положительна. Следовательно, полученное базисное решение, как и исходное, содержит две отрицательные компоненты, т. е. при переходе к такому базисному решению улучшения не произойдёт.

Для изготовления трех видов рубашек используются нитки, пуговицы и ткань. Запасы ниток, пуговиц и ткани, нормы их расхода на пошив одной рубашки указаны в таблице. Найти максимальную прибыль и оптимальный план выпуска изделий ее обеспечивающий (найти ).

рубашка 1 рубашка 2 рубашка 3 Запасы нитки (м.) 1 9 3 96 пуговицы (шт.) 20 10 30 640 ткань ( 1 2 2 44 Прибыль (р.) 2 5 4

Решение задачи

Построение модели

Через и количество рубашек 1-го, 2-го и 3-го вида, предназначенных к выпуску.

Тогда ограничения на ресурсы будут иметь следующий вид:

Кроме того, по смыслу задачи

Целевая функция, выражающая получаемую прибыль:

Получаем следующую задачу линейного программирования:

Приведение задачи линейного программирования к каноническому виду

Приведем задачу к каноническому виду. Введем дополнительные переменные. В целевую функцию все дополнительные переменные введем с коэффициентом, равным нулю. Дополнительные переменные прибавим к левым частям ограничений, не имеющих предпочтительного вида, и получим равенства.

Решение задачи симплекс-методом

Заполняем симплексную таблицу:

Так как мы решаем задачу на максимум – наличие в индексной строке отрицательных чисел при решении задачи на максимум свидетельствует о том, что нами оптимальное решение не получено и что от таблицы 0-й итерации необходимо перейти к следующей.

Переход к следующей итерации осуществляем следующим образом:

ведущий столбец соответствует

Ключевая строка определяется по минимуму соотношений свободных членов и членов ведущего столбца (симплексных отношений):

На пересечении ключевого столбца и ключевой строки находим разрешающий элемент, т.е. 9.

Теперь приступаем к составлению 1-й итерации: Вместо единичного вектора вводим вектор .

В новой таблице на месте разрешающего элемента пишем 1, все остальные элементы ключевого столбца –нули. Элементы ключевой строки делятся на разрешающий элемент. Все остальные элементы таблицы вычисляются по правилу прямоугольника.

Ключевой столбец для 1-й итерации соответствует

Разрешающим элементов является число 4/3. Вектор выводим из базиса и вводим вместо него вектор . Получаем таблицу 2-й итерации.

Ключевой столбец для 2-й итерации соответствует

Находим ключевую строку, для этого определяем:

Разрешающим элементов является число 10/3. Вектор выводим из базиса и вводим вместо него вектор . Получаем таблицу 3-й итерации.

БП c Б A o x 1 x 2 x 3 x 4 x 5 x 6 Симплексные 2 5 4 0 0 0 отношения 0 x 4 0 96 1 9 3 1 0 0 32/3 x 5 0 640 20 10 30 0 1 0 64 x 6 0 44 1 2 2 0 0 1 22 F j - c j 0 -2 -5 -4 0 0 0 1 x 2 5 32/3 1/9 1 1/3 1/9 0 0 32 x 5 0 1600/3 170/9 0 80/3 -10/9 1 0 20 x 6 0 68/3 7/9 0 4/3 -2/9 0 1 17 F j - c j 160/3 -13/9 0 -7/3 5/9 0 0 2 x 2 5 5 -1/12 1 0 1/6 0 -1/4 -- x 5 0 80 10/3 0 0 10/3 1 -20 24 x 3 4 17 7/12 0 1 -1/6 0 3/4 204/7 F j - c j 93 -1/12 0 0 1/6 0 7/4 3 x 2 5 7 0 1 0 1/4 1/40 -3/4 x 1 2 24 1 0 0 1 3/10 -6 x 3 4 3 0 0 1 -3/4 -7/40 17/4 F j - c j 95 0 0 0 1/4 1/40 5/4

В индексной строке все члены неотрицательные, поэтому получен следующее решение задачи линейного программирования (выписываем из столбца свободных членов):

Необходимо шить 24 рубашки 1-го вида, 7 рубашек 2-го вида и 3 рубашки 3-го вида. При этом получаемая прибыль будет максимальна и составит 95 руб.

Необходимо решить задачу линейного программирования.

Целевая функция:

2x 1 +5x 2 +3x 3 +8x 4 →min

Ограничивающие условия:

3x 1 +6x 2 -4x 3 +x 4 ≤12
4x 1 -13x 2 +10x 3 +5x 4 ≥6
3x 1 +7x 2 +x 3 ≥1

Приведем систему ограничений к каноническому виду, для этого необходимо перейти от неравенств к равенствам, с добавлением дополнительных переменных.

Так как наша задача — задача минимизации, то нам необходимо преобразовать ее к задаче на поиск максимума. Для этого изменим знаки коэффициентов целевой функции на противоположные. Элементы первого неравенства записываем без изменений, добавив в него дополнительную переменную x 5 и изменив знак «≤» на «=». Т. к. второе и третье неравенства имеют знаки «≥» необходимо поменять знаки их коэффициентов на противоположные и внести в них дополнительные переменные x 6 и x 7 соответственно. В результате получем эквивалентную задачу:

3x 1 +6x 2 -4x 3 +x 4 +x 5 =12
-4x 1 +13x 2 -10x 3 -5x 4 +x 6 =-6
-3x 1 -7x 2 -x 3 +x 7 =-1

Переходим к формированию исходной симплекс таблицы. В строку F таблицы заносятся коэффициенты целевой функции с противоположным знаком.

Своб член

F
X5
X6
X7

В составленой нами таблице имеются отрицательные элементы в столбце свободных членов, находим среди них максимальный по модулю — это элемент: -6, он задает ведущую строку — X6. В этой строке так же находим максимальный по модулю отрицательный элемент: -10 он находится в столбце X3 который будет ведущим столбцом. Переменная в ведущей строке исключается из базиса, а переменная соответсвующая ведущему столцу включается в базис. Пересчитаем симплекс-таблицу:

X1 X2 X6 X4 Своб член
F 0.8 8.9 0.3 6.5 -1.8
X5 4.6 0.8 -0.4 3 14.4
X3 0.4 -1.3 -0.1 0.5 0.6
X7 -2.6 -8.3 -0.1 0.5 -0.4

В составленой нами таблице имеются отрицательные элементы в столбце свободных членов, находим среди них максимальный по модулю — это элемент: -0.4, он задает ведущую строку — X7. В этой строке так же находим максимальный по модулю отрицательный элемент: -8.3 он находится в столбце X2 который будет ведущим столбцом. Переменная в ведущей строке исключается из базиса, а переменная соответсвующая ведущему столцу включается в базис. Пересчитаем симплекс-таблицу:

X1 X7 X6 X4 Своб член
F -1.988 1.072 0.193 7.036 -2.229
X5 4.349 0.096 -0.41 3.048 14.361
X3 0.807 -0.157 -0.084 0.422 0.663
X2 0.313 -0.12 0.012 -0.06 0.048

Так как в столбце свободных членов нет отрицательных элементов, то найдено допустимое решение.В строке F имеются отрицательные элементы, это означает что полученое решение не оптимально. Определим ведущий столбец. Для этого найдем в строке F максимальный по модулю отрицательный элемент — это -1.988 Ведущей строкой будет та для которой отношение свободного члена к соответствующему элементу ведущего столбца минимально. Ведущей строкой является X2, а ведущий элемент: 0.313.

X2 X7 X6 X4 Своб член
F 6.351 0.31 0.269 6.655 -1.924
X5 -13.895 1.763 -0.577 3.882 13.694
X3 -2.578 0.152 -0.115 0.577 0.539
X1 3.195 -0.383 0.038 -0.192 0.153

Так как в строке F нет отрицательных элементов, то
найдено оптимальное решение. Так как исходной задачей был поиск минимума, то оптимальным решением будет свободный член строки F, взятый с противоположным знаком. F=1.924
при значениях переменных равных: x 3 =0.539, x 1 =0.153. Переменные x 2 и x 4 не входят в базис, поэтому x 2 =0 x 4 =0.



Похожие статьи