Сложное движение точки. Абсолютное, относительное и переносное движения Абсолютное и относительное движение точки

Переносным движением точки называется ее движение в рассматриваемый момент времени вместе с подвижной системой координат относительно неподвижной системы координат .

Переносная скорость и переносное ускорение точки обозначается индексом е : ,.

Переносной скоростью (ускорением) точки М в данный момент времени называют вектор, равный скорости
(ускорению
) той точки
m подвижной системы координат, с которой совпадает в данный момент движущая точка М (рис. 8.1).

Проведем радиус-вектор начала координат (рис. 8.1). Из рисунка видно, что

Чтобы найти переносную скорость точки в заданный момент времени необходимо продифференцировать радиус-вектор при условии, что координаты точкиx, y, z не изменяются в данный момент времени:

Переносное ускорение соответственно равно

Таким образом для определения переносной скорости и переносного ускоренияв данный момент времени необходимо мысленно остановить в этот момент времени относительное движение точки, определить точкуm тела, неизменно связанного с подвижной системой координат, где находится в остановленный момент точка М , и вычислить скорость и ускорение точки m тела, совершающего переносное движение относительно неподвижной системы координат.

Постановка задач на сложное движение точки

1.Прямая задача :

По заданным переносному и относительному движениям точки найти кинематические характеристики абсолютного движения точки.

2. Обратная задача :

Некоторое заданное движение точки представить сложным, разложив его на относительное и переносное, и определить кинематические характеристики этих движений. Для однозначного решения этой задачи необходимы дополнительные условия.

Теорема сложения скоростей

Абсолютная скорость точки определяется по теореме о сложении скоростей, согласно которойабсолютная скорость точки, совершающей сложное движение, равна геометрической сумме переносной и относительной скоростей:

Доказательство :

Для определения абсолютной скорости точки продифференцируем выражение справа (8.4) по времени, используя свойства производной вектора по скалярному аргументу:

(8.8)

В последнем выражении слева первые четыре слагаемых по формуле (8.5) представляют переносную скорость , последние три слагаемых по формуле (8.1) – относительную скорость. Теорема доказана.

Теорема сложения ускорений при переносном поступательном движении

Абсолютное ускорение точки, совершающей сложное движение при переносном поступательном движении равно геометрической сумме относительного и переносного ускорения:

. (8.9)

Доказательство :

Вернемся к рис. 8.1. При переносном поступательном движении орты
не меняются не только по величине, но и по направлению, т.е. это постоянные векторы, а т.к. производные от постоянных векторов, а т.к. производные от постоянных векторов равны нулю, то по формуле (8.6)

. (8.10)

Для определения абсолютного ускорения точки продифференцируем дважды радиус-вектор (8.4) по времени, учитывая постоянство ортов
:

В последнем выражении первое слагаемое по формуле (8.10) представляет переносное ускорение , а последние три по формуле (8.2) – относительное ускорение. Теорема доказана.

Теорема сложения ускорений при произвольном переносном движении (теорема Кориолиса)

Абсолютное ускорение точки определяется потеореме Кориолиса , согласно которой абсолютное ускорение точки, совершающей сложное движение, равно геометрической сумме переносного, относительно и кориолисова ускорений:

. (8.11)

Кориолисово ускорение вычисляется по формуле:

, (8.12)

где- вектор угловой скорости переносного движения,- вектор относительной скорости точки. Направление вектора кориолисова ускорения определяется по правилу векторного произведения: кориолисово ускорение будет направлено перпендикулярно плоскости, в которой лежат векторыи(рис. 8.2), в ту сторону, откуда кратчайший поворот от векторак векторувидится происходящим против хода часовой стрелки.

Модуль кориолисова ускорения равен .

Докажем справедливость теоремы для переносного вращательного движения.

Пусть подвижная система координат Oxyz вращается вокруг оси l с угловой скоростью
(рис. 8.3). Во все время движения радиус-векторы точки по-прежнему связаны зависимостью

Так как по определению
, продифференцируем выражение (8.8) по времени, учитывая свойства производной вектора по скалярному аргументу:

В последнем выражении первые четыре слагаемые представляют переносное ускорение , следующие три слагаемые представляют относительную скорость. Оставшиеся слагаемые обозначим (*). В выражении (*) производная от каждого орта по времени представляет собой линейную скорость точки, для которой этот орт является радиусом-вектором. Например для орта(рис. 8.3) скорость
точкиА его конца равна

.

Но так как орт вращается вокруг осиl , то скорость его конца можно определить по векторной формуле Эйлера:

.

Следовательно

. (8.14)

Аналогично для ортов и:

,
. (8.15)

Подставляя формулы (8.14) и (8.15) в выражение (*), получим

Используя сочетательное свойство векторного произведения относительно числовых множителей, какими являются
, имеем

Таким образом,

.

Теорема для переносного вращательного движения доказана.

СЛОЖНЫЕ ДВИЖЕНИЯ ТОЧКИ

§ 1. Абсолютное, относительное и переносное движения точки

В ряде случаев приходится рассматривать движение точки по отношению к системе координат О 1 ξηζ, которая, в свою очередь, движется по отношению к другой системе координат Охуz условно принятой в качестве неподвижной. В механике каждую из указан­ных систем координат связывают с некоторым телом. Например, рас­смотрим качение без скольжения колеса вагона по рель­су. С рельсом свяжем неподвижную систему координат Аху, а подвижную систему Oξη свяжем с центром колеса и предположим, что она движется поступательно. Движе­ние точки на ободе колеса является составным или сложным.

Введем следующие определения:

1. Движение точки относительно системы координат Охуz (рис. 53) называется абсолютным.

2. Движение точки относительно подвижной системы координат O 1 ξηζ называется населенным.

3. Переносным движением точки называют движение той точки тела, связанного с подвижной системой координат О 1 ξηζ , относи­тельно неподвижной системы координат, с которой в данный момент совпадает рассматриваемая движущаяся точка.

Таким образом, переносное движение вызвано движением под­вижной системы координат по отношению к неподвижной. В приве­денном примере с колесом переносное движение точки обода колеса обусловлено поступательным движением системы координат О 1 ξηζ по отношению к неподвижной системе координат Аху.

Уравнения абсолютного движения точки получим, выразив коор­динаты точки х, у,z как функции времени:

х=х(t ), у = у(t ), z = z (t ).

Уравнения относительного движения точки имеют вид

ξ = ξ (t ), η = η (t), ζ = ζ (t ).

В параметрической форме уравнения (11.76) выражают уравне­ния абсолютной траектории, а уравнения (11.77) - соответственно уравнения относительной траектории.

Различают также абсолютную, переносную и от­носительную скорость и соответственно абсолютное, переносное и относительное ускорения точки. Абсо­лютную скорость обозначают υ a , относительную - υ r , переносную - υ е Соответственно ускорения обознача­ют: ω а , ω r и ω е .

Основной задачей кинематики сложного движения точки является установление зависимости между скоростями и ускорениями точки в двух системах координат: неподвижной и под­вижной.

Для доказательства теорем о сложении скоростей и ускоре­ний в сложном движении точки введем понятие о локальной или относительной производной.


Теорема о сложении скоростей

Теорема . При сложном (составном) движении точки ее абсолютная скорость υ a равна векторной сумме отно­сительной υ r и переносной υ е скоростей.

Пусть точка М совершает одновременные движения по отношению к неподвижной и подвижной системам координат (рис. 56). Обозначим угловую скорость поворота системы коор­динат Оξηζ через ω . Положение точки М определяется радиусом-вектором r .

Установим соотношение между скоростями точки М по отноше­нию к двум системам координат - неподвижной и подвижной. На основании доказанной в предыдущем параграфе теоремы

Из кинематики точки известно, что первая производная от ра­диуса-вектора движущейся точки по времени выражает скорость этой точки. Поэтому = r = υ а - абсолютная скорость, =υ r - относительная скорость,

а ω xr = υ е - переносная ско­рость точки М. Следовательно,

υ а = υ r + υ е

Формула (11.79) выражает правило параллелограмма скоростей. Модуль абсолютной скорости найдем по теореме косинусов:



В некоторых задачах кинематики требуется определить относи­тельную скорость υ r . Из (11.79) следует

υ r = υ а +(- υ е) .

Таким образом, чтобы построить вектор относительной скорости, нужно геометрически сложить абсолютную скорость с век­тором, равным по абсолютной величине, но противоположно направ­ленным переносной скорости.

Определение сложного (составного) движения точки. Определение абсолютного, относительного и переносного движения, скорости и ускорения. Доказательство теоремы о сложении скоростей и теоремы Кориолиса о сложении ускорений. Кориолисово (поворотное) ускорение.

Содержание

Здесь мы покажем, что при сложном движении, абсолютная скорость точки равна векторной сумме относительной и переносной скоростей:
.
Абсолютное ускорение точки равно векторной сумме относительного, переносного и кориолисова (поворотного) ускорений:
,
где - кориолисово ускорение.

Пример применения изложенной ниже теории приводится на странице “Сложное движение точки. Пример решения задачи ”.

Сложное (составное) движение точки

Часто встречаются случаи, когда точка совершает известное движение относительно некоторого твердого тела. А это тело, в свою очередь, движется относительно неподвижной системы координат. Причем движение точки относительно тела и закон движения тела относительно неподвижной системы координат известны или заданы. Требуется найти кинематические величины (скорость и ускорение) точки относительно неподвижной системы координат.

Такое движение точки называется сложным или составным .

Сложное или составное движение точки - это движение в подвижной системе координат. То есть движение точки описывается в системе координат, которая сама совершает движение относительно неподвижной системы координат.

Далее, для ясности изложения, будем считать, что подвижная система координат жестко связана с некоторым твердым телом. Мы будем рассматривать движение точки относительно тела (относительное движение) и движение тела относительно неподвижной системы координат (переносное движение).

Относительное движение точки при сложном движении - это движение точки относительно тела (подвижной системы координат) считая, что тело покоится.

Переносное движение точки при сложном движении - это движение точки, жестко связанной телом, вызванное движением тела.

Абсолютное движение точки при сложном движении - это движение точки относительно неподвижной системы координат, вызванное движением тела и движением точки относительно тела.

Сложное движение. Точка M движется относительно движущегося тела.

Пусть Oxyz - неподвижная система координат, O n x o y o z o - подвижная система координат, жестко связанная с телом. Пусть - единичные векторы (орты), направленные вдоль осей x o , y o , z o подвижной системы координат. Тогда радиус-вектор точки M в неподвижной системе определяется по формуле:
(1) ,
где - радиус-вектор точки O n - начала подвижной системы координат, связанной с телом.

Относительная скорость и ускорение

При относительном движении изменяются координаты x o , y o , z o точки относительно тела. А векторы являются постоянными, не зависящими от времени. Дифференцируя (1) по времени, считая постоянными, получаем формулы для относительной скорости и ускорения:
(2) ;
(3) .

Относительная скорость точки при сложном движении - это скорость точки при неподвижном положении тела (подвижной системы координат), вызванная движением точки относительно тела.

Относительное ускорение точки при сложном движении - это ускорение точки при неподвижном положении тела, вызванное движением точки относительно тела.

Переносная скорость и ускорение

При переносном движении изменяются векторы , определяющие положение тела. Относительные координаты точки x o , y o , z o являются постоянными. Дифференцируя (1) по времени, считая x o , y o , z o постоянными, получаем формулы для переносной скорости и ускорения:
(4) ;
(5) .

Переносная скорость точки при сложном движении - это скорость точки, жестко связанной с телом, вызванная движением тела.

Переносное ускорение точки при сложном движении - это ускорение точки, жестко связанной с телом, вызванное движением тела.

Производные по времени от - это скорость и ускорение начала подвижной системы координат O n : ; .

Найдем формулы для производных по времени от векторов . Для этого возьмем две произвольные точки твердого тела A и B . Их скорости связаны соотношением:

(см. страницу “Скорость и ускорение точек твердого тела ”). Рассмотрим вектор , проведенный из точки A в точку B . Тогда
.
Дифференцируем по времени и применяем предыдущую формулу:
.
Итак, мы нашли формулу для производной по времени от вектора, соединяющего две точки тела:
.
Поскольку векторы жестко связаны с телом, то их производные по времени определяются по этой формуле:
(6) , , .

Подставляем в (4) :

.
Таким образом, выражение (4) приводит к формуле для скорости точек твердого тела.

Выполняя подобные преобразования над формулой (5) , получим формулу для ускорения точек твердого тела:
,
где - угловое ускорение тела.

Абсолютная скорость и ускорение

При абсолютном движении изменяются как векторы , определяющие положение тела, так и относительные координаты точки x o , y o , z o .

Абсолютная скорость точки при сложном движении - это скорость точки в неподвижной системе координат.

Абсолютное ускорение точки при сложном движении - это ускорение точки в неподвижной системе координат.

Теорема о сложении скоростей

При составном движении абсолютная скорость точки равна векторной сумме относительной и переносной скоростей:
.

Доказательство

Дифференцируем (1) (2) и (4) .
(1) ;
(7)
.

Теорема Кориолиса о сложении ускорений

При составном движении абсолютное ускорение точки равно векторной сумме относительного, переносного и кориолисова (поворотного) ускорений:
,
где
- кориолисово ускорение.

Доказательство

Дифференцируем (7) по времени, применяя правила дифференцирования суммы и произведения. Затем подставляем (3) и (5) .
(7) .


.

В последнем члене применим (6) и (2) .

.
Тогда
.

До сих пор мы изучали движение точки или тела по отношению к одной заданной системе отсчета. Однако в ряде случаев при решении задач механики оказывается целесообразным (а иногда и необходимым) рассматривать движение точки (или тела) одновременно по отношению к двум системам отсчета, из которых одна считается основной или условно неподвижной, а другая определенным образом движется по отношению к первой.

Движение, совершаемое при этом точкой (или телом), называют составным или сложным. Например, шар, катящийся по палубе движущегося парохода, можно считать совершающим по отношению к берегу сложное движение, состоящее из качения по отношению к палубе (подвижная система отсчета), и движение вместе с палубой парохода по отношению к берегу (неподвижная система отсчета). Таким путем сложное движение шара разлагается на два более простых и более легко исследуемых. Возможность разложить путем введения дополнительной (подвижной) системы отсчета более сложное движение точки или тела на более простые широко используется при кинематических расчетах и определяет практическую ценность теории сложного движения, рассматриваемой в этой и следующей главах. Кроме того, результаты этой теории используются в динамике для изучения относительного равновесия и относительного движения тел под действием сил.

Рассмотрим точку М, движущуюся по отношению к подвижной системе отсчета , которая в свою очередь как-то движется относительно другой системы отсчета которую называем основной или условно неподвижной (рис. 182). Каждая из этих систем отсчета связана, конечно, с определенным телом, на чертеже не показанным. Введем следующие определения.

1. Движение, совершаемое точкой М по отношению к подвижной системе отсчета (к осям ), называется относительным движением (такое движение будет видеть наблюдатель, связанный с этими осями и перемещающийся вместе с ними).

Траектория АВ, описываемая точкой в относительном движении, называется относительной траекторией. Скорость точки М по отношению к осям Охуz называется относительной скоростью (обозначается ), а ускорение - относительным ускорением (обозначается ). Из определения следует, что при вычислении можно движение осей во внимание не принимать (рассматривать их как неподвижные).

2. Движение, совершаемое подвижной системой отсчета Охуz (и всеми неизменно связанными с нею точками пространства) по отношению к неподвижной системе является для точки М переносным движением.

Скорость той неизменно связанной с подвижными осями Охуz точки , с которой в данный момент времени совпадает движущаяся точка М, называется переносной скоростью точки М в этот момент (обозначается ипер), а ускорение этой точки - переносным ускорением точки М (обозначается арер). Таким образом,

Если представить себе, что относительное движение точки происходит по поверхности (или внутри) твердого тела, с которым жестко связаны подвижные оси Охуz, то переносной скоростью (или ускорением) точки М в данный момент времени будет скорость (или ускорение) той точки тела, с которой в этот момент совпадает точка М.

3. Движение, совершаемое точкой по отношению к неподвижной системе отсчета называется абсолютным или сложным. Траектория CD этого движения называется абсолютной траекторией, скорость абсолютной скоростью (обозначается ) и ускорение - абсолютным ускорением (обозначается ).

В приведенном выше примере движение шара относительно палубы парохода будет относительным, а скорость - относительной скоростью шара; движение парохода по отношению к берегу будет для шара переносным движением, а скорость той точки палубы, которой в данный момент времени касается шар, будет в этот момент его переносной скоростью; наконец, движение шара по отношению к берегу будет его абсолютным движением, а скорость - абсолютной скоростью шара.

Для решения соответствующих задач кинематики необходимо установить зависимости между относительными, переносными и абсолютными скоростями и ускорениями точки, к чему мы и перейдем.


§ 2. 5. Движение: абсолютное, относительное, переносное. Теорема Эйлера. Угловая скорость.

Дополнительно к неподвижным осям Oxyz (система S) введем в рассмотрение некоторое подвижное твердое тело и неизменно связанную с ним систему прямоугольных осей координат O’x’y’z’ (система S’).

Движение точки относительно подвижной системы осей S’ называется относительным движением.

Движение точки относительно неподвижных осей S называется абсолютным движением.

Переносным движением точки за интервал времени (t,t+Dt) называется то движение по отношению к осям S, которая эта точка имела бы, если бы в момент времени t и на интервал (t,t+Dt) она была неизменно связана с подвижной системой осей и, следовательно, перемещалась бы вместе с этой системой.

Траектория, скорость и ускорение называются абсолютными, относительными или переносными, смотря по тому, относятся ли они к движению абсолютному, относительному или переносному.

Теорема Эйлера: Если относительно системы S система S" имеет одну неподвижную точку, то перемещение S" из одного произвольного положения в любое другое может быть совершено одним поворотом на определенный угол относительно оси, проходящей через эту неподвижную точку.

Для доказательства достаточно показать возможность перевода одним поворотом дуги, например, .

Проведем два экватора: a, перпендикулярный середине x 1 "x 2 ", и b, перпендикулярный середине z 1 "z 2 ". Получим две точки пересечения этих экваторов – с и d.

Dx 1 "z 1 "d = Dz 2 "x 2 "d

(так как x 1 "z 1 " = x 2 "z 2 ", а x 1 "d = x 2 "d в силу того, что точка d лежит на экваторе, перпендикулярном середине x 1 "x 2 ",

z 1 "d = z 2 "d по той же причине)

Таким образом, Ðx 1 "dz 1 " = Ðz 2 "dx 2 " и угол между дугами x 1 "d и x 2 "d равен углу между дугами z 1 "d и z 2 "d, то есть нужно повернуть x 1 "z 1 " относительно оси dO"c на угол x 1 "dz 1 " (или равный ему z 2 "dx 2 ")

Теорема Эйлера справедлива и для конечных поворотов и для бесконечно малых. Хотя последовательность бесконечно малых поворотов может быть любой – результат будет тем же, конечные же повороты не коммутируют. Это тем более справедливо для бесконечно малых поворотов, чем ближе дуги, описываемые какой-либо точкой, к хордам, соединяющим концы дуг.

При рассмотрении задач о движении тела с одной закрепленной точкой, которые имеют большое практическое значение, для определения (фиксации) положения системы S" относительно S широко используются три угла Эйлера.

Пересечение плоскостей O"xy и O"x"y" дает прямую, которую называют линией узлов (орт линии узлов - ). Первый угол Эйлера j - угол между осью O"x и линией узлов. Второй угол y - угол между линией узлов и осью O"x". Третий угол q - угол между осями O"z и O"z".

Эти три угла однозначно определяют положение системы S" относительно S

Таким образом, при бесконечно малом повороте системы S" относительно S на углы dj,dy,dq (некоторые из них могут быть равными нулю) их можно заменить одним поворотом на угол dc вокруг некоторой оси, проходящей через точку O".

Введем в рассмотрение вектор бесконечно малого поворота:

(здесь направлен по оси вращения по правилу правого винта)

Величина и направление вектора dc при сложном движении могут изменяться. Ось называется осью мгновенного вращения. Посмотрим, что происходит с ортами системы S" при ее повороте на угол

§ 2. 6. Сложное движение точки.

продифференцировав это соотношение по времени, получим:

Абсолютная скорость точки (относительно системы S),

Скорость начала координат S" относительно S,

Не является скоростью точки М относительно системы S", так как орты этой системы являются функциями времени.

,

используя формулы (2.5.1) будем иметь:

Последнее слагаемое означает, что производная берется при неизменных ортах системы O’x’y’z’, .

Теперь для скоростей имеем:

здесь v h -переносная, v – абсолютная, v’ – относительная скорость точки, то есть получена связь этих скоростей. Переносная скорость состоит из двух слагаемых: первое присутствует в том случае, если подвижная система отсчета движется поступательно, второе появляется в том случае, если подвижная система отсчета совершает вращение.

Для получения связи ускорений продифференцируем по времени соотношение для скоростей:

Абсолютное ускорение, - ускорение начала координат S’ относительно S.



Похожие статьи