Продольные колебания. Современные проблемы науки и образования

Обращаясь к основным дифференциальным уравнениям колебаний, мы заметим, что когда умножим их на – = к 2 , они будут содержать члены, из которых одни имеют коэффициентом квадрат скорости и поперечных колебаний, другие – квадрат скорости продольных колебаний.

Первыечлены в случае колебаний продольных должны исчезнуть из уравнений, и мы получаем первую группу:

Так как поверхность p по нашему выбору есть поверхность волны, то в уравнениях § 7 мы должны удержать одно колебание R и приравнять нулю колебания /?! и R. 2 , совершающиеся в плоскости, касательной к волне. Вследствие этого находим, полагая // =1:

Так как А = 0, то уравнения (1) примут вид:

Умножая первое из уравнений (2) на //i // 2 , дифференцируя по p и обращая внимание на уравнение (4), находим:

что по уравнениям (2) В не зависит ни от р х, ни от [–]. Следовательно, означая через &F частную производную от функции F по одной из переменных ^, р. 2 , мы получаем из уравнения (7):

Подставляя в это выражение величины Н 1 Н 2 , найденные в п.п. 3, приравнивая нулю коэффициенты при различных степенях, мы находим следующие условия, которым должна удовлетворять волновая Ф – я

Известно, что подобные соотношения имеют место только для сферы, круглого цилиндра и плоскости.

Отсюда имеем, что изотермические волновые поверхности могут распространять колебания продольные.

Итак, если поверхность сотрясения или начальная волна не принадлежат к поверхностям изотермических волн, то вблизи их колебания происходят смешанные , но на значительных расстояниях волна приближается к виду одной из изотермических волн, и в явлении обнаруживаются колебания продольные. СТОП!!!

Остается проинтегрировать приведенные дифференциальные уравнения для сферы, с использованием гармонических функций!!!

Эксперименты Теслы гармонический осциллятор – недопустим!!!

Для сферы в координатах, уже нами употреблённых, мы имеем:

Дальнейшие преобразования несущественны и не приводятся, так как приводят к исходному уравнению , не имеющему физического смысла для солитоноподобных волн.

Найденные выводы одинаково применимы к явлениям света в телах однородных и притом в тех пределах приближения, которые имеют место в теории Буссинеска!?

Отсюда: «болевой момент» выявлен.

Н. Умов математический сборник, т. 5, 1870 г. .

Ещё одна «страшная» неопределённость

Рассуждая аналогично, можно было бы легко получить подобное же выражение и для магнитной энергии, а следовательно и для токов. Мы видим, что, даже настаивая на самой простой из формул, проблему локализации энергии по-прежнему не удаётся решить .

И то же самое имеем для потока энергии. Можно преобразовать движение текущей энергии произвольным образом, добавляя к вектору Пойнтинга другой вектор (u, v, w), обязанный удовлетворять лишь уравнению несжимаемых жидкостей

Являющаяся следствием общих уравнений, ничего к ним не добавляет.

Поэтому локализация энергии логически бесполезна (а иногда, вредна).

Но имеется аспект, в котором важно рассмотреть теорему Пойнтинга.

Основным фактом, из которого проистекает закон сохранения энергии, был и остаётся экспериментально найденный факт невозможности вечного движения , факт – независимо от наших идей, и может, быть отнесён к порциям энергии, которой должен обладать эфир в отсутствие материальных тел.

Закон сохранения энергии , в его классической форме W = Const , объясняет эту невозможность.

Теорема Пойнтинга , требующая возможности преобразования объёмного интеграла (отчасти произвольного) в поверхностный, выражает гораздо меньше. Она легко допускает создание вечного движения, не будучи способна показать его невозможность !

По сути, пока мы не введём гипотезу запаздывающих потенциалов , непрерывное выделение энергии сходящихся волн, приходящих из бесконечности, остаётся столь же вероятным, сколь и потеря энергии, наблюдаемая в действительности.

Если бы двигатель мог вечно забирать одну лишь энергию эфира, независимо от присутствия материальных тел, то могло бы существовать и вечное движение . Таким образом, становится ясно, что прежде чем принять формулу запаздывающих потенциалов, мы должны доказать, что ускоренная частица теряет энергию и в результате подвергается противодействию, пропорциональному производной ее ускорения .

Достаточно лишь изменить знак c , чтобы прийти к гипотезе сходящихся волн.

Тогда мы обнаружим , что знак вектора излучения также изменится, и новая гипотеза приведёт, скажем, в случае вибрирующей частицы, к постепенному увеличению амплитуды с течением времени, а в целом – к увеличению энергии системы?!

В Природе солитоны бывают:

– на поверхности жидкости первые солитоны, обнаруженные в природе, иногда считают таковыми волны цунами

различные виды гидроудара

– звуковые ударные – преодоление «сверхзвука»

– ионозвуковые и магнитозвуковые солитоны в плазме

– солитоны в виде коротких световых импульсов в активной среде лазера

– предположительно, примером солитона является Гигантский гексагон на Сатурне

– можно рассматривать в виде солитонов нервные импульсы , .

Математическая модель, уравнение Кортевега-де Фриза.

Одной из простейших и наиболее известных моделей, допускающих существование солитонов в решении, является уравнение Кортевега-де Фриза:

u t + uu x + βu xxx = 0.


Одним из возможных решений данного уравнения является уединённый солитон :

но и здесь осцилятором является гармоническая функция где r , s ,α, U – некоторые постоянные.

Теоремы неопределённости в гармоническом анализе

Гармонический осциллятор в квантовой механике – описывается уравнением Шредингера ,

(217.5)

Уравнение (217.5) называется уравнением Шредингера для стационарных состояний.

Стационарные состояния квантового осциллятора определяются уравнением Шредингера вида


(222.2)

где Е – полная энергия осциллятора.

В теории дифференциальных уравнений доказывается, что уравнение (222.2) решается только при собственных значениях энергии

(222.3)

Формула (222.3) показывает, что энергия квантового осциллятора квантуется.

Энергия ограничена снизу отличным от нуля, как и для прямоугольной «ямы» с бесконечно высокими «стенками» (сМ. § 220), минимальным значением энергии

E 0 = 1/2 w 0 . Существование минимальной энергии – называется энергией нулевых колебаний – является типичной для квантовых систем и представляет собой прямое следствие соотношения неопределенностей.

В гармоническом анализе принцип неопределённости подразумевает, что нельзя точно получить значения функции и её отображения Фурье – а значит и сделать точный расчёт .

То есть моделирование, генерация и аналогия с соблюдением принципов подобия процессов и форм в Природе, с применением гармонического осцилятора не возможна.

Разных видов математических солитонов известно пока мало и все они не подходят для описания объектов в трехмерном пространстве, тем более процессов происходящих в Природе.

Например , обычные солитоны , которые встречаются в уравнении Кортевега–де Фриза, локализованы всего лишь в одном измерении, если его «запустить» в трехмерном мире, то он будет иметь вид летящей вперед бесконечной плоской мембраны, мягко говоря абракадабра!!!

В природе, такие бесконечные мембраны не наблюдаются, а значит, исходное уравнение для описания трехмерных объектов не годится.

Вот здесь и заключается ошибочность введения гармонических функций – осцилляторов, связи в случае смешанных колебаний. Связной закон подобия , , но это уже другая история, которая выведет, теорию солитонов из систематической неопределённости , .

Стержнем называют тело, один из размеров которого, называемый продольным, значительно превышает его размеры в плоскости, перпендикулярной к продольному направлению, т.е. поперечные размеры. Основным свойством стержня является сопротивление, оказываемое продольному сжатию (растяжению) и изгибу. Это свойство коренным образом отличает стержень от струны, которая не растягивается и не сопротивляется изгибу. Если плотность материала стержня во всех его точках одинакова, то стержень называют однородным.

Обычно в качестве стержней рассматриваются протяженные тела, ограниченные замкнутой цилиндрической поверхностью. В этом случае площадь поперечного сечения остается постоянной. Мы будем изучать поведение именно такого однородного стержня длины l , предполагая, что он подвержен только сжатию или растяжению, подчиняясь при этом закону Гука. При изучении малых продольных деформаций стержня обычно принимается так называемая гипотеза плоских сечений. Она заключается в том, что поперечные сечения, перемещаясь при сжатии или растяжении вдоль стержня, остаются плоскими и параллельными друг другу.

Направим ось x вдоль продольной оси стержня (Рис. 19) и будем считать, что в начальный момент времени концы стержня находятся в точках x=0 и x=l . Возьмем произвольное сечение стержня с координатой x . Обозначим через u (x , t ) смещение этого сечения в момент времени t , тогда смещение сечения с координатой в тот же момент времени будет равно

Тогда относительное удлинение стержня в сечении x будет равно

Сила сопротивления этому удлинению по закону Гука будет равна

где E – модуль упругости материала стержня (модуль Юнга), а S – площадь поперечного сечения. На границах участка стержня длиной dx на него действуют силы T x и T x + dx , направленные вдоль оси x . Результирующая эти их сил будет равна

,

а ускорение рассматриваемого участка стержня равно , тогда уравнение движения этого участка стержня будет иметь вид:

, (67)

где ρ – плотность материала стержня. Если эта плотность и модуль Юнга, постоянны, то можно ввести величину через и, поделив обе части уравнения на Sdx , окончательно получить уравнение продольных колебаний стержня в отсутствии внешних сил

(68)

Это уравнение по форме совпадает с уравнением поперечных колебаний струны и методы решения для него те же, однако, коэффициентом a в этих уравнениях обозначены разные величины. В уравнении струны величина a 2 представляет дробь,в числителе которой стоит постоянная сила натяжения струны – Т , а в знаменателе линейная плотность ρ , а в уравнении струныв числители стоит модуль Юнга, а в знаменателе – объемная плотность материала стержня ρ . Отсюда и физический смысл величины a в этих уравнениях разный. Если для струны этот коэффициент является скоростью распространения малого поперечного смещения, то для стержня он является скоростью распространения малого продольного растяжения или сжатия и называется скоростью распространением звука , поскольку именно с этой скоростью будут распространяться по стержню малые продольные колебания, представляющие собой звук.



Для уравнения (68) задаются начальные условия, которые определяют смещение и скорость смещения любого сечения стержня в начальный момент времени:

Для ограниченного стержня задаются условия закрепления или приложения силы на его концах в виде граничных условий 1-го, 2-го и 3-го рода.

Граничные условия первого рода задают продольное перемещение на концах стержня:

Если концы стержня закреплены неподвижно, то в условиях (6) . В этом случае, так же как и в задаче о колебании защемленной струны применим метод разделения переменных.

В граничных условиях II рода на концах стержня задаются упругие силы, образующиеся в результате деформации по закону Гука в зависимости от времени. Согласно формуле (66) эти силы с точностью до постоянного множителя равны производной u x , поэтому на концах и задаются эти производные как функции времени:

Если один из концов стержня свободен, то на этом конце u x = 0.

Граничные условия третьего рода могут быть представлены как условия, при которых к каждому концу стержня прикреплена пружина, другой конец которой перемещается вдоль оси по заданному закону времени θ (t ), как это изображено на Рис. 20. Эти условия могут быть записаны следующим образом

, (72)

где k 1 и k 2 – жесткости пружин.



Если на стержень вдоль оси действует ещё и внешняя сила p (x , t ), рассчитанная на единицу объема, то вместо уравнения (50) следует записать неоднородное уравнение

,

Которое, после деления на примет вид

, (73)

где . Уравнение (73) представляет собой уравнение вынужденных продольных колебаний стержня, которое решается по аналогии с уравнением вынужденных колебаний струны.

Замечание. Следует заметить, что и струна и стержень являются моделями реальных тел, которые в действительности могут проявлять как свойства струны, так и стержня, в зависимости от условий, в которых они находятся. Кроме того, в полученных уравнениях не учитываются силы сопротивления окружающей среды и силы внутреннего трения, в результате чего эти уравнения описывают незатухающие колебания. Для учета эффекта затухания в простейшем случае используется диссипативная сила, пропорциональная скорости и направленная в сторону, противоположную движению, т.е. скорости. В результате уравнение (73) принимает вид

(74)

В этом параграфе нами будет рассмотрена задача о продольных колебаниях однородного стержня. Стержень - это тело цилиндрической (в частности, призматической) формы, для растяжения или сжатия которого надо приложить известное усилие. Мы будем считать, что все силы действуют вдоль оси стержня и каждое из поперечных сечений стержня (рис. 23) перемещается поступательно только вдоль оси стержня.

Обычно это предположение оправдывается, если поперечные размеры стержня малы по сравнению с его длиной, а силы, действующие вдоль оси стержня, сравнительно невелики. На практике продольные колебания возникают чаще всего тогда, когда стержень предварительно немного растягивается или, наоборот, сжимается, а затем предоставляется самому себе. В этом случае в нем возникают свободные продольные колебания. Выведем уравнения этих колебаний.

Направим ось абсцисс по оси стержня (рис. 23); в состоянии покоя концы стержня имеют соответственно абсциссы Рассмотрим сечение ; - его абсцисса в состоянии покоя.

Смещение этого сечения в любой момент времени t будет характеризоваться функцией для отыскания которой мы и должны составить дифференциальное уравнение. Найдем прежде всего относительное удлинение участка стержня, ограниченного сечениями Если абсцисса сечения в состоянии покоя , то смещение этого сечения в момент времени t с точностью до бесконечно малых высшего порядка равно

Поэтому относительное удлинение стержня в сечении с абсциссой в момент времени t равно

Считая, что силы, вызывающие это удлинение, подчиняются закону Гука, найдем величину силы натяжения Т, действующей на сечение :

(5.2)

где - площадь поперечного сечения стержня, а - модуль упругости (модуль Юнга) материала стержня. Формула (5.2) должна быть хорошо известна читателю из курса сопротивления материалов.

Соответственно сила действующая на сечение равна

Поскольку силы заменяют действие отброшенных частей стержня, их результирующая равна разности

Считая выделенный участок стержня материальной точкой с массой , где - объемная плотность стержня, и применяя к нему второй закон Ньютона, составим уравнение

Сокращая на и вводя обозначение получим дифференциальное уравнение свободных продольных колебаний стержня

Если дополнительно предпоюжить, что к стержню приложена внешняя сила рассчитанная на единицу объема и действующая вдоль оси стержня, то к правой части соотношения (5 3) добавится слагаемое и уравнение (5.4) примет вид

что в точности совпадает с уравнением вынужденных котебаний струны.

Перейдем теперь к установлению начальных и краевых условий задачи и рассмотрим практически наиболее интересный случай, когда один конец стержня закреплен, и другой - свободен.

На свободном конце краевое условие будет иметь иной вид. Так как на этом конце внешние силы отсутствуют, то должна быть равна нулю и сила Т, действующая в сечении , т. е.

Колебания происходят оттого, что в начальный момент стержень был деформирован (растянут или сжат) и точкам стержня были приданы некоторые начальные скорости. Следовательно, мы должны знать смещение поперечных сечений стержня в момент

а также начальные скорости точек стержня

Итак, задача о свободных продольных колебаниях стержня, закрепленного на одном конце, возникающих благодаря начальному сжатию или растяжению, привела нас к уравнению

с начальными условиями

и краевыми условиями

Именно последнее условие и отличает с математической точки зрения рассматриваемую задачу от задачи о колебаниях струны, закрепленной на обоих концах.

Будем решать поставленную эадачу методом Фурье, т. е. отыскивать частные решения уравнения, удовлетворяющие краевым условиям (5.8), в виде

Так как дальнейший ход решения аналогичен уже изложенному в § 3, ограничимся только краткими указаниями. Дифференцируя функцию , подставляя полученные выражения в (5.6) и разделяя переменные, получим

(Предоставляем читателю самостоятельно установить, что в силу краевых условий постоянная в правой части не может быть числом положительным или нулем.) Общее решение уравнения имеет вид

В силу условий, наложенных на функцию будем иметь

Решения, не тождественно равные нулю, будут получаться только при соблюдении условия , т. е. при , где k может принимать значения

Итак, собственными числами задачи служат числа

Каждому соответствует собственная функция

Как мы уже знаем, умножая любую из собственных функций на произвольную постоянную, будем получать решение уравнения с поставленными краевыми условиями. Легко проверить, что, придавая числу k отрицательные значения, мы не получим новых собственных функций (например, при будет получаться функция, отличающаяся от собственной функции ) только знаком),

Докажем прежде всего, что собственные функции (5.11) ортогональны в интервале . Действительно, при

Если же , то

Доказать ортогональность собственных функций ожно и иначе, не опираясь на их явные выражения, а пользуясь только дифференциальным уравнением и краевыми усювиями. Пусть и - два различных собственных числа, и - соответствующие им собственные функции. По определению эти функции удовлетворяют уравнениям

и краевым условиям. Умножим первое из уравнений на второе на и вычтем одно из другого.

Продольные волны

Определение 1

Волна, в которой колебания происходят в направлении ее распространения. Примером продольной волны может служить звуковая волна.

Рисунок 1. Продольная волна

Механические продольные волны также называют компрессионными волнами или волнами сжатия, так как они производят сжатие при движении через среду. Поперечные механические волны также называют "Т-волны" или "волны сдвига".

Продольные волны включают в себя акустические волны (скорость частиц, распространяющихся в упругой среде) и сейсмические Р-волны (созданные в результате землетрясений и взрывов). В продольных волнах, смещение среды параллельно направлению распространения волны.

Звуковые волны

В случае продольных гармонических звуковых волн , частота и длина волны может быть описана формулой:

$y_0-$ амплитуда колебаний;\textit{}

$\omega -$ угловая частота волны;

$c-$ скорость волны.

Обычная частота $\left({\rm f}\right)$волны задается

Скорость звука распространения зависит от типа, температуры и состава среды, через которую он распространяется.

В упругой среде, гармоническая продольная волна проходит в положительном направлении вдоль оси.

Поперечные волны

Определение 2

Поперечная волна - волна, в которой направление молекул колебаний среды перпендикулярно к направлению распространения. Примером поперечных волн служит электромагнитная волна.

Рисунок 2. Продольная и поперечная волны

Рябь в пруду и волны на струне легко представить в виде поперечных волн.

Рисунок 3. Световые волны являются примером поперечной волны

Поперечные волны являются волнами, которые колеблются перпендикулярно к направлению распространения. Есть два независимых направления, в которых могут возникать волновые движения.

Определение 3

Двумерные поперечные волны демонстрируют явление, называемое поляризацией.

Электромагнитные волны ведут себя таким же образом, хотя это немного сложнее увидеть. Электромагнитные волны также являются двухмерными поперечными волнами.

Пример 1

Докажите, что уравнение плоской незатухающей волны ${\rm y=Acos}\left(\omega t-\frac{2\pi }{\lambda }\right)x+{\varphi }_0$ для волны, которая представлена на рисунке, можно записать в виде ${\rm y=Asin}\left(\frac{2\pi }{\lambda }\right)x$. Убедитесь в этом, подставив значения координаты$\ \ x$, которые раны $\frac{\lambda}{4}$; $\frac{\lambda}{2}$; $\frac{0,75}{\lambda}$.

Рисунок 4.

Уравнение $y\left(x\right)$ для плоской незатухающей волны не зависит от $t$, значит, момент времени $t$ можно выбрать произвольным. Выберем момент времени $t$ таким, что

\[\omega t=\frac{3}{2}\pi -{\varphi }_0\] \

Подставим это значение в уравнение:

\ \[=Acos\left(2\pi -\frac{\pi }{2}-\left(\frac{2\pi }{\lambda }\right)x\right)=Acos\left(2\pi -\left(\left(\frac{2\pi }{\lambda }\right)x+\frac{\pi }{2}\right)\right)=\] \[=Acos\left(\left(\frac{2\pi }{\lambda }\right)x+\frac{\pi }{2}\right)=Asin\left(\frac{2\pi }{\lambda }\right)x\] \ \ \[{\mathbf x}{\mathbf =}\frac{{\mathbf 3}}{{\mathbf 4}}{\mathbf \lambda }{\mathbf =}{\mathbf 18},{\mathbf 75}{\mathbf \ см,\ \ \ }{\mathbf y}{\mathbf =\ }{\mathbf 0},{\mathbf 2}{\cdot}{\mathbf sin}\frac{{\mathbf 3}}{{\mathbf 2}}{\mathbf \pi }{\mathbf =-}{\mathbf 0},{\mathbf 2}\]

Ответ: $Asin\left(\frac{2\pi }{\lambda }\right)x$



Похожие статьи