Интерполяционная формула ньютона. Интерполяционные многочлены ньютона Первая интерполяционная формула ньютона

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Московский государственный университет приборостроения и информатики Сергиево-Посадский филиал

Реферат на тему:

Интерполяционные формулы Ньютона

Выполнила: Бревчик Таисия Юрьевна

Студентка 2 курса группы ЭФ-2

1.Введение

2. Первая интерполяционная формула Ньютона

3. Вторая интерполяционная формула Ньютона

Заключение

Список литературы

Введение

Интерполямция, интерполимрование -- в вычислительной математике способ нахождения промежуточных значений величины по имеющемуся дискретному набору известных значений.

Многим из тех, кто сталкивается с научными и инженерными расчётами, часто приходится оперировать наборами значений, полученных опытным путём или методом случайной выборки. Как правило, на основании этих наборов требуется построить функцию, на которую могли бы с высокой точностью попадать другие получаемые значения. Такая задача называется аппроксимацией. Интерполяцией называют такую разновидность аппроксимации, при которой кривая построенной функции проходит точно через имеющиеся точки данных.

Существует также близкая к интерполяции задача, которая заключается в аппроксимации какой-либо сложной функции другой, более простой функцией. Если некоторая функция слишком сложна для производительных вычислений, можно попытаться вычислить её значение в нескольких точках, а по ним построить, то есть интерполировать, более простую функцию.

Разумеется, использование упрощенной функции не позволяет получить такие же точные результаты, какие давала бы первоначальная функция. Но в некоторых классах задач достигнутый выигрыш в простоте и скорости вычислений может перевесить получаемую погрешность в результатах.

Следует также упомянуть и совершенно другую разновидность математической интерполяции, известную под названием «интерполяция операторов».

К классическим работам по интерполяции операторов относятся теорема Рисса -- Торина (Riesz-Thorin theorem) и теорема Марцинкевича (Marcinkiewicz theorem), являющиеся основой для множества других работ.

Рассмотрим систему несовпадающих точек () из некоторой области. Пусть значения функции известны только в этих точках:

Задача интерполяции состоит в поиске такой функции из заданного класса функций, что

Точки называют узлами интерполяции, а их совокупность -- интерполяционной сеткой.

Пары называют точками данных или базовыми точками.

Разность между «соседними» значениями -- шагом интерполяционной сетки. Он может быть как переменным, так и постоянным.

Функцию -- интерполирующей функцией или интерполянтом.

1. Первая интерполяционная формула Ньютона

1. Описание задачи. Пусть для функции заданы значения для равноотстоящих значений независимой переменной: , где - шаг интерполяции . Требуется подобрать полином степени не выше, принимающий в точках значения

Условия (1) эквивалентны тому, что при.

Интерполяционный полином Ньютона имеет вид:

Легко видеть, что полином (2) полностью удовлетворяет требованиям поставленной задачи. Действительно, во-первых, степень полинома не выше, во-вторых,

Заметим, что при формула (2) превращается в ряд Тейлора для функции:

Для практического использования интерполяционную формулу Ньютона (2) обычно записывают в несколько преобразованном виде. Для этого введём новую переменную по формуле; тогда получим:

где представляет собой число шагов , необходимых для достижения точки, исходя из точки. Это и есть окончательный вид интерполяционной формулы Ньютона .

Формулу (3) выгодно использовать для интерполирования функции в окрестности начального значения , где мало по абсолютной величине.

Если дана неограниченная таблица значений функции, то число в интерполяционной формуле (3) может быть любым. Практически в этом случае число выбирают так, чтобы разность была постоянной с заданной степенью точности. За начальное значение можно принимать любое табличное значение аргумента.

Если таблица значений функции конечна, то число ограничено, а именно: не может быть больше числа значений функции, уменьшенного на единицу.

Заметим, что при применении первой интерполяционной формулы Ньютона удобно пользоваться горизонтальной таблицей разностей, так как тогда нужные значения разностей функции находятся в соответствующей горизонтальной строке таблицы.

2. Пример . Приняв шаг, построить интерполяционный полином Ньютона для функции, заданной таблицей

Полученный полином дает возможность прогнозирования. Достаточную точность получаем при решении интерполяционной задачи, например, .Точность падает при решении экстраполяционной задачи, например, .

2. Вторая интерполяционная формула Ньютона

Первая интерполяционная формула Ньютона практически неудобна для интерполирования функции вблизи узлов таблицы. В этом случае обычно применяется .

Описание задачи. Пусть имеем последовательность значений функции

для равноотстоящих значений аргумента, где - шаг интерполяции. Построим полином следующего вида:

или, используя обобщённую степень, получаем:

Тогда, при выполнении равенства, получим

Подставим эти значения в формулу (1). Тогда, окончательно, вторая интерполяционная формула Ньютона имеет вид:

Введём более удобную запись формулы (2). Пусть, тогда

Подставив эти значения в формулу (2), получим:

Это и есть обычный вид второй интерполяционной формулы Ньютона . Для приближённого вычисления значений функции полагают:

Как первая, так и вторая интерполяционные формулы Ньютона могут быть использованы для экстраполирования функции, т. е. для нахождения значений функции для значений аргументов, лежащих вне пределов таблицы.

Если и близко к, то выгодно применять первую интерполяционную формулу Ньютона, причём тогда. Если же и близко к, то удобнее пользоваться второй интерполяционной формулой Ньютона, причём.

Таким образом, первая интерполяционная формула Ньютона обычно используется для интерполирования вперёд и экстраполирования назад , а вторая интерполяционная формула Ньютона, наоборот, - для интерполирования назад и экстраполирования вперёд .

Заметим, что операция экстраполирования, вообще говоря, менее точна, чем операция интерполирования в узком смысле слова.

Пример. Приняв шаг, построить интерполяционный полином Ньютона для функции, заданной таблицей

Заключение

интерполяция ньютон экстраполирование формула

В вычислительной математике существенную роль играет интерполяция функций, т.е. построение по заданной функции другой (как правило, более простой), значения которой совпадают со значениями заданной функции в некотором числе точек. Причем интерполяция имеет как практическое, так и теоретическое значение. На практике часто возникает задача о восстановлении непрерывной функции по ее табличным значениям, например полученным в ходе некоторого эксперимента. Для вычисления многих функций оказывается эффективно приблизить их полиномами или дробно-рациональными функциями. Теория интерполирования используется при построении и исследовании квадратурных формул для численного интегрирования, для получения методов решения дифференциальных и интегральных уравнений.

Список литературы

1. В.В. Иванов. Методы вычислений на ЭВМ. Справочное пособие. Изд-во "Наукова думка". Киев. 1986.

2. Н.С. Бахвалов, Н.П. Жидков, Г.М. Кобельков. Численные методы. Изд-во "Лаборатория базовых знаний". 2003.

3. И.С. Березин, Н.П. Жидков. Методы вычислений. Изд. ФизМатЛит. Москва. 1962.

4. К. Де Бор. Практическое руководство по сплайнам. Изд-во "Радио и связь". Москва. 1985.

5. Дж. Форсайт, М.Мальком, К. Моулер. Машинные методы математических вычислений. Изд-во "Мир". Москва. 1980.

Размещено на Allbest.ru

...

Подобные документы

    Применение первой и второй интерполяционной формул Ньютона. Нахождение значений функции в точках, не являющимися табличными. Bспользование формулы Ньютона для не равностоящих точек. Нахождение значения функции с помощью интерполяционной схемы Эйткена.

    лабораторная работа , добавлен 14.10.2013

    Иоганн Карл Фридрих Гаусс - величайший математик всех времен. Интерполяционные формулы Гаусса, дающие приближенное выражение функции y=f(x) при помощи интерполяции. Области применение формул Гаусса. Основные недостатки интерполяционных формул Ньютона.

    контрольная работа , добавлен 06.12.2014

    Интерполирование функции в точке, лежащей в окрестности середины интервала. Интерполяционные формулы Гаусса. Формула Стирлинга как среднее арифметическое интерполяционных формул Гаусса. Кубические сплайн-функции как математическая модель тонкого стержня.

    презентация , добавлен 18.04.2013

    Непрерывная и точечная аппроксимация. Интерполяционные полиномы Лагранжа и Ньютона. Погрешность глобальной интерполяции, квадратичная зависимость. Метод наименьших квадратов. Подбор эмпирических формул. Кусочно-постоянная и кусочно-линейная интерполяции.

    курсовая работа , добавлен 14.03.2014

    Методы хорд и итераций, правило Ньютона. Интерполяционные формулы Лагранжа, Ньютона и Эрмита. Точечное квадратичное аппроксимирование функции. Численное дифференцирование и интегрирование. Численное решение обыкновенных дифференциальных уравнений.

    курс лекций , добавлен 11.02.2012

    Осуществление интерполяции с помощью полинома Ньютона. Уточнение значения корня на заданном интервале тремя итерациями и нахождение погрешности вычисления. Применение методов Ньютона, Сампсона и Эйлера при решении задач. Вычисление производной функции.

    контрольная работа , добавлен 02.06.2011

    В вычислительной математике существенную роль играет интерполяция функций. Формула Лагранжа. Интерполирование по схеме Эйткена. Интерполяционные формулы Ньютона для равноотстоящих узлов. Формула Ньютона с разделенными разностями. Интерполяция сплайнами.

    контрольная работа , добавлен 05.01.2011

    Вычисление производной по ее определению, с помощью конечных разностей и на основе первой интерполяционной формулы Ньютона. Интерполяционные многочлены Лагранжа и их применение в численном дифференцировании. Метод Рунге-Кутта (четвертого порядка).

    реферат , добавлен 06.03.2011

    Кінцеві різниці різних порядків. Залежність між кінцевими різницями і функціями. Дискретний і неперервний аналіз. Поняття про розділені різниці. Інтерполяційна формула Ньютона. Порівняння формул Лагранжа і Ньютона. Інтерполяція для рівновіддалених вузлів.

    контрольная работа , добавлен 06.02.2014

    Нахождение интерполяционных многочленов Лагранжа и Ньютона, проходящих через четыре точки заданной функции, сравнение их степенных представлений. Решение нелинейного дифференциального уравнения методом Эйлера. Решение систем алгебраических уравнений.

Лекция 4

1. Конечные разности
2. Первая интерполяционная формула
Ньютона
3. Вторая интерполяционная формула
Ньютона
4. Погрешности интерполяции

Конечные разности 1–го порядка

Если интерполируемая функция y = f(x) задана в
равноотстоящих узлах, так что xi = x0 + i∙h, где h – шаг таблицы, а
i = 0, 1, … n, то для интерполяции могут применяться формулы
Ньютона, использующие конечные разности.
Конечной разностью первого порядка называется разность yi
= yi+1 - yi, где
yi+1= f(xi+h) и yi = f(xi). Для функции, заданной
таблично в (n+1) узлах, i = 0, 1, 2, …, n, конечные разности
первого порядка могут быть вычислены в точках 0, 1, 2,…, n - 1:
y 0 y1 y 0 ,
y1 y 2 y1,
.......................
yn 1 yn yn 1.

Конечные разности высших порядков

Используя конечные разности первого порядка, можно
получить конечные разности второго порядка 2yi = yi+1 - yi:
2 y 0 y1 y 0 ;
2 y1 y 2 y1;
..........................
2 y n 2 y n 1 y n 2 .
Конечные разности k-го порядка в узле с номером i могут
быть вычислены через разности (k-1)–го порядка:
k yi k 1yi 1 k 1yi
Любые конечные разности можно вычислить через значения
функции в узлах интерполяции, например:
2 y 0 y1 y 0 (y 2 y1) (y1 y 0) y 2 2y1 y 0 .

Таблица конечных разностей

x
y
Δy
Δ2y
Δ3y
x0
y0 Δy0 = y1 – y0 Δ2y0 = Δy1 – Δy0 Δ3y0 = Δ2y1 – Δ2y0
x1 = x0 + h
y1 Δy1 = y2 – y1 Δ2y1 = Δy2 – Δy1
x2 = x0 + 2h
y2 Δy2 = y3 – y2
x3 = x0 + 3h
y3

По величине конечных разностей можно
сделать
вывод
о
степени
интерполяционного
многочлена,
описывающего
таблично
заданную
функцию.
Если
для
таблицы
с
равноотстоящими
узлами
конечные
разности k-го порядка постоянны или
соизмеримы с заданной погрешностью, то
функцию можно представить многочленом
k-й степени.

Конечные разности и степень многочлена

Рассмотрим, например, таблицу конечных разностей для
многочлена y = x2 – 3x + 2.
0
y
-0.16
2y
0.08
3y
0
1.2
-0.16
-0.08
0.08
0
1.4
-0.24
0
0.08
1.6
-0.24
0.08
1.8
-0.16
x
y
1.0
Конечные разности третьего порядка равны нулю, а все
конечные разности второго порядка одинаковы и равны 0.08. Это
говорит о том, что функцию, заданную таблично, можно
представить многочленом 2–й степени (ожидаемый результат,
учитывая способ получения таблицы).

Пусть функция y = f(x) задана в n+1 равноотстоящих узлах xi , i = 0, 1,
2,…n с шагом h. Требуется найти интерполяционный многочлен Pn(x)
степени n, удовлетворяющий условию:
Pn(xi) = yi, i =0, 1, 2, …,n .
Будем искать интерполяционный многочлен в виде:
Pn(x) = a0 + a1(x-x0) + a2(x-x0)(x-x1) + … + an(x-x0)(x-x1)…(x-xn-1),
где аi, i = 0, 1, 2,…n – неизвестные коэффициенты, не зависящие от узлов
интерполяции. Найдем эти коэффициенты из условий интерполяции.
Пусть х = x0, тогда Pn(x0) = y0 = a0. Следовательно, a0 = y0.
Пусть х = x1, тогда Pn(x1) = y1 = a0 + a1(x1 - x0) = y0 + a1(x1 - x0), откуда
a1
y1 y0 y0
.
x1 x0
h
Теперь пусть х = х2 , тогда:
Pn (x 2) y 2 a0 a1(x 2 -x 0) a2 (x 2 -x 0)(x 2 -x1) y 0
y 0
2h a2 2h2.
h
Выразив из этого выражения a2, получим:
y 2 2 y0 y0 y 2 2(y1 y0) y0 y 2 2y1 y 0 2 y 0
a2
.
2h2
2h2
2h2
2h2

Первая интерполяционная формула Ньютона

Продолжая подстановки, можно получить выражение для любого
коэффициента с номером i:
i y 0
ai
,
i! hi
i 0,1,...,n.
Подставив найденные значения коэффициентов в исходное выражение,
получим первую интерполяционную формулу Ньютона:
y0
2 y0
n y 0
Pn (x) y0
(x x0)
(x x 0)(x x1) ...
(x x 0)...(x x n 1).
1!h
2!h2
n!hn
Из формулы видно, что в ней используется верхняя строка таблицы
конечных разностей (слайд 4). Особенностью формулы является также
последовательное увеличение степени многочлена по мере добавления
очередных слагаемых. Это позволяет уточнять получаемый результат без
пересчета уже учтенных слагаемых.

Первая интерполяционная формула Ньютона

Первая интерполяционная формула Ньютона может быть записана в
более компактном и удобном для программной реализации виде.
Обозначив
q
x x0
,
h
x x 0 qh
и проведя несложные преобразования вида:
x x1 x x 0 h
q 1;
h
h
x xn
x x2
q n 1,
q 2;.....;
h
h
получим первую интерполяционную формулу Ньютона, выраженную
относительно неизвестной q:
n y 0
2 y0
q(q 1)...(q n 1).
q(q 1) ...
Pn (x) Pn (x0 hq) y0 y0q
n!
2!

10. Первая интерполяционная формула Ньютона

Конечные разности высших порядков, используемые в формуле
Ньютона, имеют обычно большую погрешность, связанную с ошибками
округления при вычитании близких значений. Поэтому соответствующие
слагаемые формулы имеют также большую погрешность. Чтобы уменьшить
их вклад в сумму, то есть в конечный результат, надо, чтобы выполнялось
условие |q| < 1. Это обеспечивается, если точка интерполяции x находится
между двумя первыми узлами таблицы: x0 < x < x1. По этой причине
интерполяцию с использованием первой формулы Ньютона называют
интерполяцией в начале таблицы или интерполяцией вперед.

интерполяции первая интерполяционная формула Ньютона принимает
следующий вид:
P1(x) y0 y0q.
P2 (x) y 0 y 0 q 2 y 0
q(q 1)
.
2

11. Пример использования первой интерполяционной формулы Ньютона


что и в примере на слайде 6. Требуется найти приближенное
значение функции в точке x = 1.1 путем квадратичной
интерполяции по первой формуле Ньютона.
x
1.0
1.2
1.4
1.6
1.8
y
0
-0.16
-0.24
-0.24
-0.16
y
-0.16
-0.08
0
0.08
2y 3y
0.08 0
0.08 0
0.08
Шаг таблицы h = 0.2
q = (x – x0)/h = 0.5
q(q 1)
2
0.5(0.5 1)
0 (0.16) 0.5 0.08
0.09
2
P2 (x) y 0 Δy 0 q Δ 2 y 0
Результат совпадает с
значением многочлена
y = x2 – 3x + 2, из которого
получена таблица

12. Схема алгоритма вычислений по первой интерполяционной формуле Ньютона

13. Вторая интерполяционная формула Ньютона

Вторая формула Ньютона обладает аналогичными свойствами
относительно правой части таблицы. Для ее построения используют
многочлен вида:
Pn(x) = a0 + a1(x-xn) + a2(x-xn)(x-xn-1) + … + an(x-xn)(x-xn-1)…(x-x1),
где аi, i = 0, 1, 2, … n – коэффициенты, не зависящие от узлов интерполяции.
Для определения коэффициентов аi будем в это выражение поочередно
подставлять узлы интерполяции. При х = xn Pn(xn) = yn, следовательно,
a0 = yn.
При х = xn-1 имеем Pn(xn-1) = yn-1 = a0 + a1(xn-1-xn) = yn + a1(xn-1-xn),
откуда
a1
yn 1 yn yn yn 1 yn 1
.
xn 1 xn xn xn 1
h

14. Вторая интерполяционная формула Ньютона

Продолжая подстановки, получим выражения для всех коэффициентов
многочлена и вторую интерполяционную формулу Ньютона:
n y 0
yn 1
2 yn 2
Pn (x) yn
(x xn)
(x xn)(x xn 1)
(x xn)...(x x1).
2
n
1!h
2!h
n!h
Из формулы видно, что в ней используется нижняя диагональ таблицы
конечных разностей (слайд 4). Как и в первой формуле Ньютона, добавление
очередных слагаемых ведет к последовательное увеличению степени
многочлена, что позволяет уточнять получаемый результат без пересчета уже
учтенных слагаемых.
Введя обозначение: q
x xn
,
h
x xn hq
и, проделав несложные преобразования, получим вторую интерполяционную
формулу Ньютона, выраженную относительно переменной подстановки q:
n y 0
2 yn 2
Pn (x) yn yn 1q
q(q 1) ...
q(q 1)...(q n 1).
2!
n!

15. Вторая интерполяционная формула Ньютона

Из тех же соображений, что и в случае первой формулы Ньютона, для
уменьшения вычислительной погрешности надо, чтобы выполнялось условие
|q| < 1. Это обеспечивается, если точка интерполяции x находится между
двумя последними узлами таблицы: xn-1 < x < xn. По этой причине
интерполяцию с использованием второй формулы Ньютона называют
интерполяцией е конце таблицы или интерполяцией назад.
Для частных случаев линейной (n=1) и квадратичной (n=2)
интерполяции вторая интерполяционная формула Ньютона принимает
следующий вид:
P1 (x) y n y n 1q
2 y n 2
P2 (x) y n y n 1 q
q(q 1)
2!

16. Пример использования второй интерполяционной формулы Ньютона

Пусть интерполируемая функция f(x) задана той же таблицей,
что и в примере на слайде 11. Требуется найти приближенное
значение функции в точке x = 1.7 путем квадратичной
интерполяции по второй формуле Ньютона.
x
1.0
1.2
1.4
1.6
1.8
y
0
-0.16
-0.24
-0.24
-0.16
y
-0.16
-0.08
0
0.08
2y 3y
0.08 0
0.08 0
0.08
Шаг таблицы h = 0.2
q = (x – xn)/h = -0.5
Результат совпадает с
значением многочлена
y = x2 – 3x + 2, из
которого получена
таблица
q(q 1)
2
0.5(0.5 1)
0.16 0.08 (0.5) 0.08
0.21
2
P2 (x) y n Δy n 1 q Δ 2 y n 2

17. Схема алгоритма вычислений по второй интерполяционной формуле Ньютона

18. Погрешности интерполяции

Интерполирующая функция в точках между
узлами интерполяции заменяет интерполирующую
функцию приближенно:
f(x) = F(x) + R(x), где R(x) – погрешность
интерполяции.
Для оценки погрешности необходимо иметь
необходимо иметь определенную информацию об
интерполируемой функции f(x). Предположим, что
f(x) определена на отрезке , содержащем все
узлы xi, и при x, принадлежащем , имеет все
производные f"(x), f""(x), … f(n+1)(x) до (n+1)–го
порядка включительно.

19. Погрешности интерполяции

Тогда

20. Выбор узлов интерполяции по формуле Лагранжа

При фиксированной степени многочлена:
x*
x0
x1
x2
x3
x4
x5
x
При последовательном увеличении степени
многочлена
x*
x4
x2
x0
x1
x3
x5
x

21. Практическая оценка погрешности интерполяции по формуле Лагранжа

На практике оценка максимального значения производной (n+1)–го
порядка Mn+1 при использовании формулы Лагранжа редко бывает возможна,
и поэтому используют приближенную оценку погрешности
R n (x) f(x) Ln (x) Ln 1 (x) Ln (x) ,
где n число используемых узлов.
Из приведенной формулы следует, что для оценки погрешности
интерполяции многочленом Лагранжа n–й степени необходимо
дополнительно вычислить значение многочлена (n+1)–й степени. Если
допустимая погрешность интерполяции задана, то необходимо, добавляя все
новые узлы, увеличивать степень многочлена до тех пор, пока модуль
разности между двумя последними значениями многочлена |Ln+1(x)-Ln(x)| не
станет меньше заданного значения.

22. Схема алгоритма интерполяции по формуле Лагранжа с заданной точностью

23. Оценка погрешностей интерполяционных формул Ньютона

Для интерполяционных
приобретают следующий вид.
1–я формула Ньютона:
R n (x) h
n 1
формул
Ньютона
оценки
q(q 1) (q n) (n 1)
f
(n 1)!
R n (x) h n 1
q(q 1) (q n)
M n 1
(n 1)!
2–я формула Ньютона:
R n (x) h
n 1
q(q 1) (q n) (n 1)
f
(n 1)!
R n (x) h n 1
q(q 1) (q n)
M n 1
(n 1)!
погрешности

24. Практическая оценка погрешностей интерполяционных формул Ньютона

При использовании интерполяционных формул Ньютона величину
f(n+1)(ξ) можно приближенно оценивать по величинам конечных разностей:
f
(n 1)
n 1
Δ y0
() n 1
h
и в этом случае формулы для оценки погрешности приобретают следующий
вид:
1–я формула Ньютона:
R n (x)
q(q 1) (q n) n 1
Δ y0
(n 1)!
2–я формула Ньютона:
R n (x)
q(q 1) (q n) n 1
Δ y0
(n 1)!

25. Интерполяция по формулам Ньютона с заданной точностью

Сравнивая эти формулы с формулами
Ньютона, можно увидеть, что для оценки
погрешности при интерполяции многочленом
n–й степени надо взять дополнительный узел
и вычислить слагаемое (n+1)–й степени.
Если задана допустимая погрешность
интерполяции ε, то надо последовательно
добавлять новые узлы и, соответственно,
новые слагаемые, увеличивая степень
интерполяционного многочлена до тех пор,
пока очередное слагаемое не станет меньше ε.

Аннотация

Пояснительная записка курсовой работы "Интерполяция функции одной переменной методом Ньютона" содержит в себе введение, анализ задания описанием входных и выходных данных, обзор литературных источников, описание математической модели и методов вычислительной математики, пояснения к алгоритму, текст программы, инструкцию. При изучении дисциплины "Информатика" для написания курсовой работы использовались различные литературные источники, которые перечислены в настоящем документе. В данной курсовой работе приведена программа, которая применяется для интерполяции таблично заданной функции методом Ньютона. В ней был использован метод структурного программирования для облегчения написания и отладки программы, а также повышения ее наглядности и читаемости. Целью написания данной работы было получение и закрепление практических навыков разработки алгоритмов различными методами. Представленная программа реализована на языке программирования Pascal. Пояснительная записка содержит 25 листов, на которых размещено два рисунка, текст программы и описание программы и алгоритма.


Введение

Анализ задания

Математическая модель задачи

Программирование функции формулы Ньютона

Обзор литературных источников

Разработка программы по схеме алгоритма

Инструкция пользования программой

Текст программы

Исходные данные и результат решения контрольного примера

Заключение

Список использованных источников


Введение

Современное развитие физики и техники тесно связано с использованием электронных вычислительных машин (ЭВМ). В настоящее время ЭВМ стали обычным оборудованием многих институтов и конструкторских бюро. Это позволило от простейших расчетов и оценок различных конструкций или процессов перейти к новой стадии работы - детальному математическому моделированию (вычислительному эксперименту), которое существенно сокращает потребность в натурных экспериментах, а в ряде случаев может их заменить.

Сложные вычислительные задачи, возникающие при исследовании физических и технических проблем, можно разбить на ряд элементарных -таких как вычисление интеграла, решение дифференциального уравнения и т. п. Многие элементарные задачи являются несложными и хорошо изучены. Для этих задач уже разработаны методы численного решения, и нередко имеются стандартные программы решения их на ЭВМ. Есть и достаточно сложные элементарные задачи; методы решения таких задач сейчас интенсивно разрабатываются.

В связи с этим современный специалист с высшим образованием должен обладать не только высоким уровнем подготовки по профилю своей специальности, но и хорошо знать математические методы решения инженерных задач, ориентироваться на использование вычислительной техники, практически освоить принципы работы на ЭВМ.


Анализ задания

В качестве входных данных использованы:

1. Количество узлов.

2. Табличные значения функции.

Выходными данными, т.е. результатом программы является:

1. Значения таблично заданной функции в промежуточных значениях.

2. График полинома.


Математическая модель задачи

При выполнении курсовой работы была выбрана следующая математическая модель:

Интерполяция и приближение функций.

1. Постановка задачи.

Одной из основных задач численного анализа является задача об интерполяции функций. Часто требуется восстановить функцию

для всех значений на отрезке если известны ее значения в некотором конечном числе точек этого отрезка. Эти значения могут быть найдены в результате наблюдений (измерений) в каком-то натурном эксперименте, либо в результате вычислений. Кроме того, может оказаться, что функция задается формулой и вычисления ее значений по этой формуле очень трудоемки, поэтому желательно иметь для функции более простую (менее трудоемкую для вычислении) формулу, которая позволяла бы находить приближенное значение рассматриваемой функции с требуемой точностью в любой точке отрезка. В результате возникает следующая математическая задача.

Пусть и» отрезке

задана сетка со

и в ее узлах заданы значения функции

, равные .

Требуется построить интерполянту - функцию

, совпадающую с функцией в узлах сетки: .

Основная цель интерполяции - получить быстрый (экономичный) алгоритм вычисления значений

для значений , не содержащихся в таблице данных.

2. Интерполяция по Ньютону

Дана табличная функция:

i
0
1
2
.. .. ..
n
, (1)

Точки с координатами

называются узловыми точками или узлами.

Количество узлов в табличной функции равно N=n+1.

Необходимо найти значение этой функции в промежуточной точке, например,

, причем . Для решения задачи используется интерполяционный многочлен.

Интерполяционный многочлен по формуле Ньютона имеет вид:

где n – степень многочлена,

Интерполяционная формула Ньютона формула позволяет выразить интерполяционный многочлен

через значение в одном из узлов и через разделенные разности функции , построенные по узлам .

Сначала приведем необходимые сведения о разделенных разностях.

Пусть в узлах

,

известны значения функции

. Предположим, что среди точек , , нет совпадающих. Разделенными разностями первого порядка называются отношения , , .

Будем рассматривать разделенные разности, составленные по соседним узлам, т. е. выражения

Довольно распространенным методом интерполирования является метод Ньютона. Интерполяционный полином для этого метода имеет вид:

P n (x) = a 0 + a 1 (x-x 0) + a 2 (x-x 0)(x-x 1) + ... + a n (x-x 0)(x-x 1)...(x-x n-1).

Задача состоит в отыскании коэффициентов a i полинома P n (x). Коэффициенты находят из уравнения:

P n (x i) = y i , i = 0, 1, ..., n,

позволяющего записать систему:

a 0 + a 1 (x 1 - x 0) = y 1 ;

a 0 + a 1 (x 2 - x 0) + a 2 (x 2 - x 0)(x 2 - x 1) = y 2 ;

- - - - - - - - - - - - - - - - - - - - - - - - - - - -

a 0 +... + a n (x n - x 0)(x n - x 1) ... (x n - x n-1) = y n ;

Используем метод конечных разностей. Если узлы x i заданы через равные промежутки h, т.е.

x i+1 - x i = h,

то в общем случае x i = x 0 + i×h, где i = 1, 2, ..., n. Последнее выражение позволяет привести решаемое уравнение к виду

y 1 = a 0 + a 1 ×h;

y 2 = a 0 + a 1 (2h) + a 2 (2h)h;

- - - - - - - - - - - - - - - - - - -

y i = a 0 + a 1 ×i×h + a 2 ×i×h[(i-1)h] + ... + a i ×i!×h i ,

откуда для коэффициентов получаем

где Dу 0 – первая конечная разность.

Продолжая вычисления, получим:

где D 2 у 0 - вторая конечная разность, представляющая собой разность разностей. Коэффициент а i можно представить в виде:

Поставляя найденные значения коэффициентов а i в значения для P n (x), получим интерполяционный полином Ньютона:

Преобразуем формулу, для чего введем новую переменную , где q – число шагов, необходимых для достижения точки х, двигаясь из точки х 0 . После преобразований получаем:

Полученная формула известна как первая интерполяционная формула Ньютона, или формула Ньютона для интерполирования "вперед". Ее выгодно использовать для интерполирования функции y = f(x) в окрестности начального значения х – х 0 , где q мало по абсолютной величине.

Если записать интерполяционный многочлен в виде:

то аналогичным образом можно получить вторую интерполяционную формулу Ньютона, или формулу Ньютона для интерполирования "назад":

Ее обычно используют для интерполирования функции вблизи конца таблицы.

При изучении данной темы необходимо помнить, что интерполяционные многочлены совпадают с заданной функцией f(x) в узлах интерполяции, а в остальных точках, в общем случае, будут отличаться. Указанная ошибка дает нам погрешность метода. Погрешность метода интерполяции определяется остаточным членом, который для формул Лагранжа и Ньютона одинаков и который позволяет получить следующую оценку для абсолютной погрешности:


Если интерполирование осуществляется с одинаковым шагом, то формула для остаточного члена видоизменяется. В частности, при интерполировании "вперед" и "назад" по формуле Ньютона выражение для R(x) несколько отличаются друг от друга.

Анализируя полученную формулу, видно, что погрешность R(x) представляет собой, с точностью до постоянной произведение двух множителей, из которых один, f (n+1) (x), где x лежит внутри , зависит от свойств функции f(x) и не поддается регулированию, а величина другого,

определяется исключительно выбором узлов интерполирования.

При неудачном расположении этих узлов верхняя граница модуля |R(x)| может быть весьма большой. Поэтому возникает задача о наиболее рациональном выборе узлов интерполирования x i (при заданном числе узлов n) с тем, чтобы полином П n+1 (х) имел наименьшее значение.

2. Интерполяция по Ньютону

Дана табличная функция:

i
0
1
2
.. .. ..
n

Точки с координатами называются узловыми точками или узлами.

Количество узлов в табличной функции равно N=n+1.

Необходимо найти значение этой функции в промежуточной точке, например, , причем . Для решения задачи используется интерполяционный многочлен.

Интерполяционный многочлен по формуле Ньютона имеет вид:

где n – степень многочлена,

Интерполяционная формула Ньютона формула позволяет выразить интерполяционный многочлен через значение в одном из узлов и через разделенные разности функции , построенные по узлам .

Сначала приведем необходимые сведения о разделенных разностях.

Пусть в узлах

известны значения функции . Предположим, что среди точек , , нет совпадающих. Разделенными разностями первого порядка называются отношения

, ,.

Будем рассматривать разделенные разности, составленные по соседним узлам, т. е. выражения

По этим разделенным разностям первого порядка можно построить разделенные разности второго порядка:

,

,

Таким образом, разделённая разность -го порядка на участке может быть определена через разделённые разности -го порядка по рекуррентной формуле:

где , , - степень многочлена.

Максимальное значение равно . Тогда и разделенная разность n-го порядка на участке равна

т.е. равна разности разделенных разностей -го порядка, разделенной на длину участка .

Разделенные разности

являются вполне определенными числами, поэтому выражение (1) действительно является алгебраическим многочленом -й степени. При этом в многочлене (1) все разделенные разности определены для участков , .

При вычислении разделенных разностей принято записывать их в виде таблицы

Разделенная разность -го порядка следующим образом выражается через значения функции в узлах:

. (1)

Эту формулу можно доказать методом индукции. Нам потребуется частный случай формулы (1):

Интерполяционным многочленом Ньютона называется многочлен

Рассмотренная форма полинома Ньютона носит название первой интерполяционной формулы Ньютона, и используется, обычно, при интерполировании вначале таблицы.

Заметим, что решение задачи интерполяции по Ньютону имеет некоторые преимущества по сравнению с решением задачи интерполяции по Лагранжу. Каждое слагаемое интерполяционного многочлена Лагранжа зависит от всех значений табличной функции y i , i=0,1,…n. Поэтому при изменении количества узловых точек N и степени многочлена n (n=N-1) интерполяционный многочлен Лагранжа требуется строить заново. В многочлене Ньютона при изменении количества узловых точек N и степени многочлена n требуется только добавить или отбросить соответствующее число стандартных слагаемых в формуле Ньютона (2). Это удобно на практике и ускоряет процесс вычислений.

Программирование функции формулы Ньютона

Для построения многочлена Ньютона по формуле (1) организуем циклический вычислительный процесс по . При этом на каждом шаге поиска находим разделенные разности k-го порядка. Будем помещать разделенные разности на каждом шаге в массив Y.

Тогда рекуррентная формула (3) будет иметь вид:

В формуле Ньютона (2) используются разделенные разности -го порядка, подсчитанные только для участков т.е. разделенные разности -го порядка для . Обозначим эти разделенные разности k-го порядка как . А разделенные разности, подсчитанные для , используются для расчетов разделенных разностей более высоких порядков.

Используя (4), свернем формулу (2). В результате получим

(5)

– значение табличной функции (1) для .

– разделенная разность -го порядка для участка .



Похожие статьи