Смешанное произведение и его геометрический смысл. Смешанное произведение векторов, его свойства, примеры и решения

Данный онлайн калькулятор вычисляет смешанное произведение векторов. Дается подробное решение. Для вычисления смешанного произведения векторов выберите способ представления векторов (по координатам или по двум точкам) введите данные в ячейки и нажимайте на кнопку "Вычислить."

×

Предупреждение

Очистить все ячейки?

Закрыть Очистить

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Смешанное произведение векторов (теория)

Смешанное произведение трех векторов это число, которое получается при скалярном произведении результата векторного произведения первых двух векторов на третьий вектор. Другими словами, если заданы три вектора a, b и c , то для получения смешанного произведения этих векторов, сначала векторно умножаются первые два вектора и полученный вектор [ab ] скалярно умножается на вектор c .

Смешанное произведение трех векторов a, b и c обозначается так: abc или так (a,b,c ). Тогда можно записать:

abc =([ab ],c )

Прежде чем сформулировать теорему, представляющую геометрический смысл смешанного произведения, ознакомьтесь с понятиями правая тройка, левая тройка, правая система координат, левая система координат (определения 2, 2" и 3 на странице векторное произведение векторов онлайн).

Для определенности, в дальнейшем мы будем рассматривать только правые системы координат.

Теорема 1. Смешанное произведение векторов ([ab ],c ) равно объему параллелипеда, построенного на приведенных к общему началу векторах a, b, c , взятому со знаком плюс, если тройка a, b, c правая, и со знаком минус, если тройка a, b, c левая. Если векторы a, b, c компланарны, то ([ab ],c ) равно нулю.

Следствие 1. Имеет место следующее равенство:

Следовательно нам достаточно доказать, что

([ab ],c )=([bc ],a ) (3)

Из выражения (3) видно, что левая и правая часть равны объему параллелипеда. Но и знаки правой и левой частей совпадают, так как тройки векторов abc и bca имеют одинаковую ориентацию.

Доказанное равенство (1) позволяет записать смешанное произведение трех векторов a, b, c просто в виде abc , не указывая, какие именно два вектора перемножаются векторно первые два или последние два.

Следствие 2. Необходимым и достаточным условием компланарности трех векторов является равенство нулю их смешанного произведения.

Доказательство вытекает из теоремы 1. Действительно, если векторы компланарны, то смешанное произведение этих векторов равно нулю. Обратное, если смешанное произведение равно нулю, то из теоремы 1 вытекает компланарность этих векторов (так как объем параллелипеда, построенного на приведенных к общему началу векторах равно нулю).

Следствие 3. Смешанное произведение трех векторов, два из которых совпадают, равно нулю.

Действительно. Если два вектора из трех совпадают, то они компланарны. Следовательно, смешанное произведение этих векторов равно нулю.

Смешанное произведение векторов в декартовых координатах

Теорема 2. Пусть три вектора a, b и c определены своими декартовыми прямоугольными координатами

Доказательство. Смешанное произведение abc равно скалярному произведению векторов [ab ] и c . Векторное произведение векторов [ab ] в декартовых координатах вычисляется формулой ():

Последнее выражение можно записать, используя определители второго порядка:

необходимо и достаточно равенство нулю определителя, строки которой заполнены координатами этих векторов, т.е:

. (7)

Для доказательства следствия достаточно рассмотреть формулу (4) и следствие 2.

Смешанное произведение векторов на примерах

Пример 1. Найти смешанное произведение векторов abс , где

Смешанное произведение векторов a, b, c равен определителю матрицы L . Вычислим определитель матрицы L , разложив определитель по строке 1:

Конечная точка вектора a .

Смешанным (или векторно-скалярным) произведением трех векторов a, b, c (взятых в указанном порядке) называется скалярное произведение вектора a на векторное произведение b x c , т. е. число a(b x c), или, что то же, (b x c)a.
Обозначение: abc .

Назначение . Онлайн-калькулятор предназначен для вычисления смешанного произведения векторов. Полученное решение сохраняется в файле Word . Дополнительно создается шаблон решения в Excel .

Признаки компланарности векторов

Три вектора (или большее число) называются компланарными, если они, будучи приведены к общему началу, лежат в одной плоскости.
Если хотя бы один из трех векторов – нулевой, то три вектора тоже считаются компланарными.

Признак компланарности . Если система a, b, c – правая, то abc>0 ; если левая, то abcГеометрический смысл смешанного произведения . Смешанное произведение abc трех некомпланарных векторов a, b, c равно объему параллелепипеда, построенного на векторах a, b, c , взятому со знаком плюс, если система a, b, c – правая, и со знаком минус, если эта система левая.

Свойства смешанного произведения

  1. При круговой перестановке сомножителей смешанное произведение не меняется, при перестановке двух сомножителей – меняет знак на обратный: abc=bca=cab=-(bac)=-(cba)=-(acb)
    Вытекает из геометрического смысла.
  2. (a+b)cd=acd+bcd (распределительное свойство). Распространяется на любое число слагаемых.
    Вытекает из определения смешанного произведения.
  3. (ma)bc=m(abc) (сочетательное свойство относительно скалярного множителя).
    Вытекает из определения смешанного произведения. Эти свойства позволяют применять к смешанным произведениям преобразования, отличающиеся от обычных алгебраических лишь тем, что менять порядок сомножителей можно только с учетом знака произведения.
  4. Смешанное произведение, имеющее хотя бы два равных сомножителя, равно нулю: aab=0 .

Пример №1 . Найти смешанное произведение. ab(3a+2b-5c)=3aba+2abb-5abc=-5abc .

Пример №2 . (a+b)(b+c)(c+a)= (axb+axc+bxb+bxc)(c+a)= (axb+axc +bxc)(c+a)=abc+acc+aca+aba+bcc+bca . Все члены, кроме двух крайних, равны нулю. Кроме того, bca=abc . Поэтому (a+b)(b+c)(c+a)=2abc .

Пример №3 . Вычислить смешанное произведение трех векторов a=15i+20j+5k, b=2i-4j+14k, c=3i-6j+21k .
Решение . Чтобы вычислить смешанное произведение векторов, необходимо найти определитель системы, составленной из координат векторов. Запишем систему в виде.

Для того, чтобы подробно рассмотреть такую тему, нужно охватить еще несколько разделов. Тема напрямую связана с такими терминами, как скалярное и векторное произведение. В этой статье мы постарались дать точное определение, указать формулу, которая поможет определить произведение, используя координаты векторов. Помимо этого, статья включает в себя разделы с перечислением свойств произведения и представлены подробный разбор типовых равенств и задач.

Термин

Для того, чтобы определить, в чем заключается данный термин, нужно взять три вектора.

Определение 1

Смешанным произведением a → , b → и d → является та величина, которая равняется скалярному произведению a → × b → и d → , где a → × b → - умножение a → и b → . Операцию умножения a → , b → и d → зачастую обозначают a → · b → · d → . Можно преобразовать формулу так: a → · b → · d → = (a → × b → , d →) .

Умножение в системе координат

Мы можем умножить вектора, если они указаны на координатной плоскости.

Возьмем i → , j → , k →

Произведение векторов в данном конкретном случае будет иметь следующий вид: a → × b → = (a y · b z - a z · b y) · i → + (a z · b x + a x · b z) · j → + (a x · b y + a y · b x) · k → = a y a z b y b z · i → - a x a z b x b z · j → + a x a y b x b y · k →

Определение 2

Для выполнения скалярного произведения в системе координат необходимо сложить результаты, полученный во время умножения координат.

Из этого следует:

a → × b → = (a y · b z - a z · b y) · i → + (a z · b x + a x · b z) · j → + (a x · b y + a y · b x) · k → = a y a z b y b z · i → - a x a z b x b z · j → + a x a y b x b y · k →

Мы также можем определить смешанное произведение векторов, если в заданной системе координат указаны координаты векторов, которые умножаются.

a → × b → = (a y a z b y b z · i → - a x a z b x b z · j → + a x a y b x b y · k → , d x · i → + d y · j → + d z · k →) = = a y a z b y b z · d x - a x a z b x b z · d y + a x a y b x b y · d z = a x a y a z b x b y b z d x d y d z

Таким образом, можно сделать вывод, что:

a → · b → · d = a → × b → , d → = a x a y a z b x b y b z d x d y d z

Определение 3

Смешанное произведение можно приравнять к определителю матрицы, в качестве строк которой использованы векторные координаты. Наглядно это выглядит так: a → · b → · d = a → × b → , d → = a x a y a z b x b y b z d x d y d z .

Свойства операции над векторами Из особенностей, которые выделяются в скалярном или векторном произведении, можно вывести особенности, которые характеризуют смешанное произведение. Ниже мы приведем основные свойства.

  1. (λ · a →) · b → · d → = a → · (λ · b →) · d → = a → · b → · (λ · d →) = λ · a → · b → · d → λ ∈ R ;
  2. a → · b → · d → = d → · a → · b → = b → · d → · a → ; a → · d → · b → = b → · a → · d → = d → · b → · a → ;
  3. (a (1) → + a (2) →) · b → · d → = a (1) → · b → · d → + a (2) → · b → · d → a → · (b (1) → + b (2) →) · d → = a → · b (1) → · d → + a → · b (2) → · d → a → · b → · (d (1) → + d (2) →) = a → · b → · d (2) → + a → · b → · d (2) →

Помимо приведенных свойств, следует уточнить, что если множитель нулевой, то результатом умножения также станет нуль.

Результатом умножения также будет нуль в том случае, если два или больше множителей равны.

Действительно, если a → = b → , то, следуя определению векторного произведения [ a → × b → ] = a → · b → · sin 0 = 0 , следовательно, смешанное произведение равно нулю, так как ([ a → × b → ] , d →) = (0 → , d →) = 0 .

Если же a → = b → или b → = d → , то угол между векторами [ a → × b → ] и d → равен π 2 . По определению скалярного произведения векторов ([ a → × b → ] , d →) = [ a → × b → ] · d → · cos π 2 = 0 .

Свойства операции умножения чаще всего требуются во время решения задач.
Для того, чтобы подробно разобрать данную тему, возьмем несколько примеров и подробно их распишем.

Пример 1

Докажите равенство ([ a → × b → ] , d → + λ · a → + b →) = ([ a → × b → ] , d →) , где λ - некоторое действительное число.

Для того, чтобы найти решение этого равенства, следует преобразовать его левую часть. Для этого необходимо воспользоваться третьим свойством смешанного произведения, которое гласит:

([ a → × b → ] , d → + λ · a → + b →) = ([ a → × b → ] , d →) + ([ a → × b → ] , λ · a →) + ([ a → × b → ] , b →)
Мы разобрали, что (([ a → × b → ] , b →) = 0 . Из этого следует, что
([ a → × b → ] , d → + λ · a → + b →) = ([ a → × b → ] , d →) + ([ a → × b → ] , λ · a →) + ([ a → × b → ] , b →) = = ([ a → × b → ] , d →) + ([ a → × b → ] , λ · a →) + 0 = ([ a → × b → ] , d →) + ([ a → × b → ] , λ · a →)

Согласно первому свойству ([ a ⇀ × b ⇀ ] , λ · a →) = λ · ([ a ⇀ × b ⇀ ] , a →) , а ([ a ⇀ × b ⇀ ] , a →) = 0 . Таким образом, ([ a ⇀ × b ⇀ ] , λ · a →) . Поэтому,
([ a ⇀ × b ⇀ ] , d → + λ · a → + b →) = ([ a ⇀ × b ⇀ ] , d →) + ([ a ⇀ × b ⇀ ] , λ · a →) = = ([ a ⇀ × b ⇀ ] , d →) + 0 = ([ a ⇀ × b ⇀ ] , d →)

Равенство доказано.

Пример 2

Необходимо доказать, что модуль смешанного произведения трех векторов не больше, чем произведения их длин.

Решение

Исходя из условия, можно представить пример в виде неравенства a → × b → , d → ≤ a → · b → · d → .

По определению, преобразуем неравенство a → × b → , d → = a → × b → · d → · cos (a → × b → ^ , d →) = = a → · b → · sin (a → , b → ^) · d → · cos ([ a → × b → ^ ] , d)

Используя элементарные функции, можно сделать вывод, что 0 ≤ sin (a → , b → ^) ≤ 1 , 0 ≤ cos ([ a → × b → ^ ] , d →) ≤ 1 .

Из этого можно сделать вывод, что
(a → × b → , d →) = a → · b → · sin (a → , b →) ^ · d → · cos (a → × b → ^ , d →) ≤ ≤ a → · b → · 1 · d → · 1 = a → · b → · d →

Неравенство доказано.

Разбор типовых задач

Для того, чтобы определить, чему равно произведение векторов, следует знать координаты умножаемых векторов. Для операции можно использовать такую формулу a → · b → · d → = (a → × b → , d →) = a x a y a z b x b y b z d x d y d z .

Пример 3

В прямоугольной системе координат представлены 3 вектора с такими координатами: a → = (1 , - 2 , 3) , b → (- 2 , 2 , 1) , d → = (3 , - 2 , 5) . Необходимо определить, чему равно произведение указанных векторов a → · b → · d → .

Исходя из теории, представленной выше, мы можем воспользоваться правилом, которое гласит, что смешанное произведение может быть вычислено через определитель матрицы. Это будет выглядеть так: a → · b → · d → = (a → × b → , d →) = a x a y a z b x b y b z d x d y d z = 1 - 2 3 - 2 2 1 3 - 2 5 = = 1 · 2 · 5 + (- 1) · 1 · 3 + 3 · (- 2) · (- 2) - 3 · 2 · 3 - (- 1) · (- 2) · 5 - 1 · 1 · (- 2) = - 7

Пример 4

Необходимо найти произведение векторов i → + j → , i → + j → - k → , i → + j → + 2 · k → , где i → , j → , k → - орты прямоугольной декартовой системы координат.

Исходя из условия, которое гласит, что вектора расположены в данной системе координат, можно вывести их координаты: i → + j → = (1 , 1 , 0) i → + j → - k → = (1 , 1 , - 1) i → + j → + 2 · k → = (1 , 1 , 2)

Используем формулу, которая использовалась выше
i → + j → × (i → + j → - k → , (i → + j → + 2 · k →) = 1 1 0 1 1 - 1 1 1 2 = 0 i → + j → × (i → + j → - k → , (i → + j → + 2 · k →) = 0

Смешанное произведение также возможно определить с помощью длины вектора, которая уже известна, и угла между ними. Разберем этот тезис в примере.

Пример 5

В прямоугольной системе координат расположены три вектора a → , b → и d → , которые перпендикулярны между собой. Они представляют собой правую тройку, их длины составляют 4 , 2 и 3 . Необходимо умножить вектора.

Обозначим c → = a → × b → .

Согласно правилу, результатом умножения скалярных векторов является число, которое равно результату умножения длин используемых векторов на косинус угла между ними. Делаем вывод, что a → · b → · d → = ([ a → × b → ] , d →) = c → , d → = c → · d → · cos (c → , d → ^) .

Используем длину вектора d → , указанную в условии примера: a → · b → · d → = c → · d → · cos (c → , d → ^) = 3 · c → · cos (c → , d → ^) . Необходимо определить с → и с → , d → ^ . По условию a → , b → ^ = π 2 , a → = 4 , b → = 2 . Вектор c → найдем с помощью формулы: c → = [ a → × b → ] = a → · b → · sin a → , b → ^ = 4 · 2 · sin π 2 = 8
Можно сделать вывод, что c → перпендикулярен a → и b → . Вектора a → , b → , c → будут являться правой тройкой, так использована декартовая система координат. Векторы c → и d → будут однонаправленными, то есть, c → , d → ^ = 0 . Используя выведенные результаты, решаем пример a → · b → · d → = 3 · c → · cos (c → , d → ^) = 3 · 8 · cos 0 = 24 .

a → · b → · d → = 24 .

Используем множители a → , b → и d → .

Вектора a → , b → и d → исходят от одной точки. Используем их как стороны для построения фигуры.

Обозначим, что c → = [ a → × b → ] . Для данного случая можно определить произведение векторов как a → · b → · d → = c → · d → · cos (c → , d → ^) = c → · n p c → d → , где n p c → d → - числовая проекция вектора d → на направление вектора c → = [ a → × b → ] .

Абсолютная величина n p c → d → равняется числу, которое также является равно высоте фигуры, для которого использованы вектора a → , b → и d → в качестве сторон. Исходя из этого, следует уточнить, что c → = [ a → × b → ] перпендикулярен a → и вектору и вектору согласно определению умножения векторов. Величина c → = a → x b → равняется площади параллелепипеда, построенного на векторах a → и b → .

Делаем вывод, что модуль произведения a → · b → · d → = c → · n p c → d → равен результату умножения площади основания на высоту фигуры, которая построена на векторах a → , b → и d → .

Определение 4

Абсолютная величина векторного произведения является объемом параллелепипеда : V п а р а л л е л е п и п и д а = a → · b → · d → .

Данная формула и является геометрическим смыслом.

Определение 5

Объем тетраэдра , который построен на a → , b → и d → , равняется 1 / 6 объема параллелепипеда Получаем, V т э т р а э д а = 1 6 · V п а р а л л е л е п и п и д а = 1 6 · a → · b → · d → .

Для того, чтобы закрепить знания, разберем несколько типичных примеров

Пример 6

Необходимо найти объем параллелепипеда, в качестве сторон которого используются A B → = (3 , 6 , 3) , A C → = (1 , 3 , - 2) , A A 1 → = (2 , 2 , 2) , заданные в прямоугольной системе координат. Объем параллелепипеда можно найти, используя формулу об абсолютной величине. Из этого следует: A B → · A C → · A A 1 → = 3 6 3 1 3 - 2 2 2 2 = 3 · 3 · 2 + 6 · (- 2) · 2 + 3 · 1 · 2 - 3 · 3 · 2 - 6 · 1 · 2 - 3 · (- 2) · 2 = - 18

Тогда, V п а р а л л е л е п и п е д а = - 18 = 18 .

V п а р а л л е л е п и п и д а = 18

Пример 7

В системе координат заданы точки A (0 , 1 , 0) , B (3 , - 1 , 5) , C (1 , 0 , 3) , D (- 2 , 3 , 1) . Следует определить объем тетраэдра, который расположен на этих точках.

Воспользуемся формулой V т э т р а э д р а = 1 6 · A B → · A C → · A D → . Мы можем определить координаты векторов по координатам точек: A B → = (3 - 0 , - 1 - 1 , 5 - 0) = (3 , - 2 , 5) A C → = (1 - 0 , 0 - 1 , 3 - 0) = (1 , - 1 , 3) A D → = (- 2 - 0 , 3 - 1 , 1 - 0) = (- 2 , 2 , 1)

Дальше определяем смешанное произведение A B → · A C → · A D → по координатам векторов: A B → · A C → · A D → = 3 - 2 5 1 - 1 3 - 2 2 1 = 3 · (- 1) · 1 + (- 2) · 3 · (- 2) + 5 · 1 · 2 - 5 · (- 1) · (- 2) - (- 2) · 1 · 1 - 3 · 3 · 2 = - 7 Объем V т э т р а э д р а = 1 6 · - 7 = 7 6 .

V т э т р а э д р а = 7 6 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Определение. Число [, ] - называют смешанным произведение упорядоченной тройки векторов, .

Обозначаем: (,) = = [, ].

Так как в определении смешанного произведения участвуют векторное и скалярное произведения, то их общие свойства являются свойствами смешанного произведения.

Например, () = ().

Теорема 1 . Смешанное произведение трех компланарных векторов равно нулю.

Доказательство. Если данная тройка векторов, компланарная, то для векторов выполняется одно их следующих условий.

  • 1. В данной тройке векторов есть хотя бы один нулевой вектор. В этом случае доказательство теоремы очевидно.
  • 2. В данной тройке векторов есть хотя бы одна пара коллинеарных векторов. Если ||, то [, ] = 0, так как [, ]= . Если

|| , то [, ] и [, ] = 0. Аналогично, если || .

3. Пусть данная тройка векторов компланарная, но случаи 1 и 2 не выполняются. Тогда вектор [, ] будет перпендикулярным плоскости, которой параллельны все три векторы, .

Следовательно, [, ] и (,) = 0.

Теорема 2. Пусть в базисе {} заданы векторы (), (), (). Тогда

Доказательство. Согласно определению смешанного произведения

(,) = [, ] = с 1 - с 2 + с 3 = .

В силу свойств определителя имеем:

Теорема доказана .

Теорема 3. (,) = [, ].

Доказательство . Так как

а в силу свойств определителя имеем:

(,) = = = [, ] = [, ].

Теорема доказана .

Теорема 4 . Модуль смешанного произведения некомпланарной тройки векторов численно равен объему параллелепипеда, построенного на представителях данных векторов с общим началом.

Доказательство . Выберем произвольную точку О и откладываем от нее представители данных векторов, : , . В плоскости ОАВ построим параллелограмм ОАDB и, добавляя ребро ОС, построим параллелепипед ОАDBCADB. Объём V этого параллелепипеда равен произведению площади основания ОАDB на длину высоты параллелепипеда ОО.

Площадь параллелограмма ОАDB равна |[, ]|. С другой стороны

|OO| = || |cos |, где - угол между векторами и [, ].

Рассмотрим модуль смешанного произведения:

|(,)| = | [, ]| = |[, ]||||cos | = |[, ]||OO| = V.

Теорема доказана.

Замечание 1. Если смешанное произведение тройки векторов равно нулю, то эта тройка векторов линейно зависимая.

Замечание 2. Если смешанное произведение данной тройки векторов положительно, то тройка векторов правая, а если отрицательно, то тройка векторов левая. Действительно, знак смешанного произведения совпадает со знаком cos , а величина угла определяет ориентацию тройки, . Если угол - острый, то тройка правая, а если - тупой угол, то тройка левая.

Пример 1. Дан параллелепипед ABCDA 1 B 1 C 1 D 1 и координаты следующих векторов в ортонормированном базисе: (4; 3; 0), (2; 1; 2), (-3; -2; 5).

Найти: 1) объем параллелепипеда;

  • 2) площади граней ABCD и CDD 1 C;
  • 3) косинус двугранного угла между плоскостями ABC и CDD 1 .

Решение.

Данный параллелепипед построен на векторах

Таким образом, его объем равен модулю смешанного произведения этих векторов, т.е.

Итак, V пар = 12 куб.ед.

Напомним, что площадь параллелограмма равна длине векторного произведения векторов, на которых он построен.

Введем обозначение: ,тогда

Следовательно, (6; - 8; - 2), откуда

Т.о. кв.ед.

Аналогично,

Пусть, тогда

откуда (15; - 20; 1) и

Значит кв.ед.

Введем следующие обозначения: пл. (АВС)=, пл. (DCC 1)=.

Согласно определению векторного произведения имеем:

А значит справедливо следующее равенство:


Из второго пункта решения имеем:

Доказать, что если, - взаимно перпендикулярные единичные векторы, то для любых векторов и справедливо равенство:

Решение.

Пусть в ортонормированном базисе, заданы координаты векторов: ; . Так как, то по свойству смешанного произведения имеем:

Таким образом, равенство (1) можно записать в следующей форме: , а это одно из доказанных свойств векторного произведения векторов и. Тем самым справедливость равенства (1) доказана.

Решение нулевого варианта контрольной работы

Задание № 1

Вектор образует с базисными векторами и соответственно, углы и. Определить угол, который образует вектор с вектором.

Решение .

Построим параллелепипед на векторах, и на диагонали, такой, что векторы и равны.

Тогда в прямоугольном треугольнике с прямым углом, величина угла равна, откуда.

Аналогично в прямоугольном треугольнике с прямым углом величина равна, откуда.

В прямоугольном треугольнике по теореме Пифагора находим:

В прямоугольном треугольнике с прямым углом катет, а гипотенуза. Значит, величина угла равна. Но угол равен углу между векторами и. Тем самым задача решена.

Задание № 2.

Заданы три вектора, в базисе,. Доказать, что четырехугольник - плоский. Найти его площадь.

Решение.

1. Если векторы, и компланарные, то - плоский четырехугольник. Вычислим определитель, составленный из координат данных векторов.

Так как определитель равен нулю, то векторы, и компланарные, а значит, четырехугольник - плоский.

2. Заметим, что, поэтому и, таким образом четырехугольник трапеция с основаниями АВ и CD.


По свойству векторного произведения имеем:

Находим векторное произведение

Задание № 3. Найти вектор, коллинеарный вектору (2; 1; -2), у которого длина равна 5.

Решение.

Обозначим координаты вектора (х, у, z). Как известно, у коллинеарных векторов координаты пропорциональны, и поэтому имеем:

х = 2t, y = t, z = ? 2t.

По условию задачи || = 5, а в координатной форме:

Выражая переменные через параметр t, получим:

4t 2 +t 2 +4t 2 =25,

Таким образом,

х = , у = , z = .

Получили два решения.



Похожие статьи