Как решать уравнения 3 степени примеры. Степенные или показательные уравнения

Без помощи скрипта придется выполнить довольно сложные расчеты методом Кардано, включающем по меньшей мере 6 шагов. Расчет начинается с приведения исходного уравнения к виду y³ + py + q = 0 и т. д.

Вычисление уравнений третьей степени востребовано при решении многих фундаментальных и прикладных математических, физических, статистических, научно-исследовательских и инженерных задач.

Уравнение третьей степени онлайн

Кубическое уравнение имеет вид:

$$ x^3 + a \cdot x^2 + b \cdot x +c =0 $$

где a, b, c – числовые коэффициенты при x.

x - переменная, значение которой, превращающее кубический многочлен в тождество, будет являться корнем кубического уравнения.

Для того, чтобы решить кубическое уравнение онлайн, необходимо поочередно задать коэффициенты уравнения.

Кубическое уравнение может иметь три действительных корня, или один (или два для вырожденного случая) и два комплексно-сопряженных корня.

Уравнение имеет три действительных корня, если $$R^2 < Q^3$$

$$ R $$ находится по следующей формуле:

$$ Q $$ можно найти по формуле:

Если $$ R^2 < Q^3 $$ , то уравнение имеет три действительных корня:

Если $$ R^2 >= Q^3 $$ , то уравнение имеет один действительный корень (или два, для вырожденных случаев) и два комплексно-сопряженных:

Функция y = x³ и ее график

Составим таблицу значений функции y = x 3: Мы видим, что при x > 0 и y > 0 (куб положительного числа положителен), а при x < 0 и y < 0 (куб отрицательного числа отрицателен). Следовательно, график расположится на координатной плоскости в I и III четвертях. Заменим значение аргумента x противоположным значением –x , тогда и функция примет противоположное значение; так как если y = x 3 , то

Значит, каждой точке (x; y) графика соответствует точка (–x; –y) того же графика, расположенная симметрично относительно начала координат.

Таким образом, начало координат является центром симметрии графика.

График функции y = x 3 изображен на чертеже 81. Эта линия называется кубической параболой.

В I четверти кубическая парабола (при x > 0) «круто» поднимается вверх (значение y «быстро» возрастают при возрастании x , см. таблицу), при малых значениях x линия «тесно» подходит к оси абсцисс (при «малых» значениях x значение y «весьма мало», см. таблицу). Левая часть кубической параболы (в III четверти) симметрична правой относительно начала координат.

Аккуратно вычерченный график может служить средством приближенного возведения чисел в куб. Так, например, положив x = 1,6, найдем по графику y ≈ 4,1.

Для приближенного вычисления кубов составлены специальные таблицы.

Такая таблица имеется и в пособии В. М. Брадиса «Четырехзначные математические таблицы».

Эта таблица содержит приближенные значения кубов чисел от 1 до 10, округленные до 4-х значащих цифр.

Устройство таблицы кубов и правила пользования ею такие же, как и таблицы квадратов. Однако при увеличении (или уменьшении) числа в 10, 100 и т. д. Раз его куб увеличивается (или уменьшается) в 1000,и т. д. раз. Значит, при пользовании таблицей кубов надо иметь в виду следующее правило переноса запятой:

Если в числе перенести запятую на несколько цифр, то в кубе этого числа надо перенести запятую в ту же сторону на утроенное количество цифр.

Поясним сказанное примерами:

1) Вычислить 2,2353. По таблице находим: 2,233 ≈ 11,09; прибавляем к последней цифре поправку 8 на последний знак: 2,2353 ≈ 11,17.

2) Вычислить (–179,8) 3 . Так как (–a) 3 = –a 3 , то находим (179,8) 3 .

По таблице найдем 1,798 3 ≈ 5,813, перенеся запятую, получим 179,8 3 ≈.

Значит, (–179,8) 3 ≈ –.

Приближенные формулы. Если в тождестве

(1 ± α)³ ≈ 1 ± 3α ± 3α² ± α³

число α мало по сравнению с единицей, то отбросив члены с α² и α³, получим приближенные формулы:

По этим формулам легко найти приближенные кубы чисел, близких к единице например:

1,02³ ≈ 1 + 3 * 0,02 = 1,06; точный куб: 1,061208;

1,03³ ≈ 1 + 3 * 0,03 = 1,09; точный куб: 1,092727;

0,98³ ≈ 1 – 3 * 0,02 = 0,94; точный куб: 0,941192;

0,97³ ≈ 1 – 3 * 0,03 = 0,91; точный куб: 0,912673.

Возведение чисел в куб на счетной линейке. Для возведения чисел в куб на корпусе линейки имеется шкала кубов K . Шкала кубов состоит из трех частей: левой, средней и правой (см. черт. 82); каждая из этих частей представляет собой основную шкалу D , но уменьшенную в три раза.

Значение возводимого в куб числа отмечаем визиром на основной шкале D , а результат читаем на шкале кубов K .

Например, 2³ = 8 (см. черт. 39).

Несколько примеров возведения чисел в куб приведено в следующей таблице. Для сравнения даны значения кубов тех же чисел, вычисленные по четырехзначным таблицам.

Решение кубических уравнений.

Любое кубическое уравнение с действительными коэффициентами имеет по крайней мере один действительный корень, два других либо также действительные, либо являются комплексно сопряженной парой.

Начнем обзор с простейших случаев - двучленного и возвратного уравнений. Затем перейдем к отысканию рациональных корней (если такие имеются). Закончим примером отыскания корней кубического уравнения по формуле Кардано для общего случая.

Навигация по странице.

Решение двучленного кубического уравнения.

Двучленное кубическое уравнение имеет вид.

Это уравнение приводится к виду делением на коэффициент А, отличный от нуля. Далее применяется формула сокращенного умножения сумма кубов:

Из первой скобки находим, а квадратный трехчлен имеет лишь комплексные корни.

Найти действительные корни кубического уравнения.

Применяем формулу сокращенного умножения разность кубов:

Из первой скобки находим, квадратный трехчлен во второй скобке не имеет действительных корней, так как его дискриминант отрицателен.

Решение возвратного кубического уравнения.

Возвратное кубическое уравнение имеет вид, где А и В – коэффициенты.

Очевидно, что х = -1 является корнем такого уравнения, а корни полученного квадратного трехчлена легко находятся через дискриминант.

Решить кубическое уравнение.

Это уравнение возвратное. Проведем группировку:

Очевидно, x = -1 является корнем уравнения.

Находим корни квадратного трехчлена:

Решение кубических уравнений с рациональными корнями.

Начнем с простейшего случая, когда х=0 является корнем кубического уравнения.

В этом случае свободный член D равен нулю, то есть уравнение имеет вид.

Если вынести х за скобки, то в скобках останется квадратный трехчлен, корни которого легко найти либо через дискриминант, либо по теореме Виета.

Найти действительные корни уравнения.

x=0 является корнем уравнения. Найдем корни квадратного трехчлена.

Так как его дискриминант меньше нуля, то действительных корней трехчлен не имеет.

Если коэффициенты кубического уравнения являются целыми числами, то уравнение может иметь рациональные корни.

При, домножим обе части уравнения на и проведем замену переменных y = Ax:

Пришли к приведенному кубическому уравнению. Оно может иметь целые корни, которые являются делителями свободного члена. Так что выписываем все делители и начинаем их подставлять в полученное уравнение до получения тождественного равенства. Тот делитель, при котором тождество получено, является корнем уравнения. Следовательно, корнем исходного уравнения является.

Найти корни кубического уравнения.

Преобразуем уравнение к приведенному: домножим на обе части и проведем замену переменной y = 2x .

Свободный член равен 36 . Запишем все его делители: .

Подставляем их по очереди в равенство до получения тождества:

Таким образом, y = -1 является корнем. Ему соответствует.

Осталось найти корни квадратного трехчлена.

Очевидно, что, то есть, его кратным корнем является х=3 .

По такому алгоритму можно решать возвратные уравнения. Так как -1 является корнем всякого возвратного кубического уравнения, то можно разделить левую часть исходного уравнения на х+1 и найти корни полученного квадратного трехчлена.

В случае, когда кубическое уравнение не имеет рациональных корней, применяются другие способы решения, к примеру, специфические способы разложения многочлена на множители.

Решение кубических уравнений по формуле Кардано.

В общем случае, корни кубического уравнения находятся по формуле Кардано.

Для кубического уравнения находятся значения. Далее находим и.

Подставляем полученные p и q в формулу Кардано:

Значения кубических корней следует брать такими, чтобы их произведение было равно. В итоге, находим корни исходного уравнения по формуле.

Решим по формуле Кардано предыдущий пример.

Как решать кубические уравнения

Кубические уравнения имеют вид ax 3 + bx 2 + cx + d = 0. Способ решения таких уравнений известен уже несколько столетий (он был открыт в 16 веке итальянскими математиками). Решить некоторые кубические уравнения довольно сложно, но при правильном подходе (и хорошем уровне теоретических знаний) вы сможете решать даже самые сложные кубические уравнения.

Шаги Править

Метод 1 из 3:

Решение при помощи формулы для решения квадратного уравнения Править

Метод 2 из 3:

Нахождение целых решений при помощи разложения на множители Править

Кубические уравнения

где \(a\ne 0,\ b,\ c,\ d\) – некоторые числа.

Кубическое уравнение всегда имеет как минимум один корень \(x_1\) .

Значит, всегда выполнено: \(ax^3+bx^2+cx+d=a(x-x_1)(x^2+mx+n)\) , где \(m, n\) – некоторые числа.

для любого числа \(a\) имеют единственный корень

Решением уравнения \(x^3=-8\) является \(x=\sqrt=-2\) .

\(>\) Кубические уравнения вида \(ax^3+bx^2+cx+d=0\) в некоторых случаях можно решить, разложив на множители левую часть.

Решить уравнение \(5x^3-x^2-20x+4=0\) .

Сгруппируем слагаемые в левой части и разложим ее на множители: \[(5x^3-20x)-(x^2-4)=0 \quad \Leftrightarrow \quad 5x(x^2-4)-(x^2-4)=0 \quad \Leftrightarrow \quad (x^2-4)(5x-1)=0\]

Тогда корнями данного уравнения являются \(x_1=-2, x_2=2, x_3=\frac15\) .

В некоторых задачах полезными могут оказаться формулы сокращенного умножения:

\(>\) Кубические уравнения вида \(ax^3+bx^2+cx+d=0\) , в которых не удается разложить левую часть на множители, можно решить другим способом: подобрать рациональный корень, если таковой имеется.

Для этого можно использовать следующие утверждения:

\(\blacktriangleright\) Если сумма \(a+b+c+d=0\) , то корнем уравнения является число \(1\) .

\(\blacktriangleright\) Если \(b+d=a+c\) , то корнем уравнения является число \(-1\) .

\(\blacktriangleright\) Пусть \(a,b,c,d\) – \(>>\) числа. Тогда если уравнение имеет рациональный корень \(\large >\) , то для него будет выполнено:

\(d\) делится нацело на \(p\) ; \(a\) делится нацело на \(q\) .

1. У уравнения \(7x^3+3x^2-x-9=0\) сумма коэффициентов равна \(7+3-1-9=0\) , значит, \(x=1\) является корнем (не обязательно единственным) этого уравнения.

2. У уравнения \(4,5x^3-3x^2-0,5x+7=0\) выполнено: \(4,5-0,5=-3+7\) , значит, \(x=-1\) является корнем этого уравнения.

3. У уравнения \(2x^3+5x^2+3x-3=0\) коэффициенты - целые числа, поэтому можно подбирать корень: делители свободного члена \(-3\) : \(\pm 1, \pm 3\) ; делители старшего коэффициента \(2\) : \(\pm1, \pm2\) . Значит, возможные комбинации рациональных корней: \[\pm 1, \ \pm\dfrac12, \ \pm 3, \ \pm \dfrac32\]

Подставляя по очереди каждое число в уравнение, убеждаемся, что \(x=\frac12\) является корнем (т.к. после подстановки этого числа в уравнение оно превращается в верное равенство):

Заметим, что если у уравнения коэффициенты - рациональные числа, то домножением уравнения на их общих знаменатель можно получить равносильное ему уравнение с целыми коэффициентами. Например, уравнение \(\frac12x^3+\frac16x+2=0\) после умножения на \(6\) сводится к уравнению с целыми коэффициентами: \(3x^3+x+12=0\) .

Найдите корень уравнения \((2x + 1)^3 = 27\) . Если уравнение имеет более одного корня, в ответе запишите больший из них.

Исходное уравнение \((2x + 1)^3 = 3^3\) стандартного вида, оно эквивалентно уравнению \(2x + 1 = 3\) , откуда заключаем, что \(x = 1\) – подходит по ОДЗ.

Найдите корень уравнения \((2x + 1)^3 = -27\) . Если уравнение имеет более одного корня, в ответе запишите больший из них.

ОДЗ: \(x\) – произвольное. Решим на ОДЗ:

Исходное уравнение \((2x + 1)^3 = (-3)^3\) стандартного вида, оно эквивалентно уравнению \(2x + 1 = -3\) , откуда заключаем, что \(x = -2\) – подходит по ОДЗ.

Найдите корень уравнения \((3x + 2)^3 = -64\) . Если уравнение имеет более одного корня, в ответе запишите больший из них.

ОДЗ: \(x\) – произвольное. Решим на ОДЗ:

Исходное уравнение \((3x + 2)^3 = (-4)^3\) стандартного вида, оно эквивалентно уравнению \(3x + 2 = -4\) , откуда заключаем, что \(x = -2\) – подходит по ОДЗ.

Найдите корень уравнения \((7x + 11)^3 = 64\) . Если уравнение имеет более одного корня, в ответе запишите больший из них.

ОДЗ: \(x\) – произвольное. Решим на ОДЗ:

Исходное уравнение \((7x + 11)^3 = 4^3\) стандартного вида, оно эквивалентно уравнению \(7x + 11 = 4\) , откуда заключаем, что \(x = -1\) – подходит по ОДЗ.

Найдите корень уравнения \((-x - 11)^3 = 216\) . Если уравнение имеет более одного корня, в ответе запишите больший из них.

ОДЗ: \(x\) – произвольное. Решим на ОДЗ:

Исходное уравнение \((-x - 11)^3 = 6^3\) стандартного вида, оно эквивалентно уравнению \(-x - 11 = 6\) , откуда заключаем, что \(x = -17\) – подходит по ОДЗ.

Решите уравнение \(8x^3-36x^2+54x-27=0\) .

Заметим, что левая часть представляет из себя куб разности: \[(2x)^3-3\cdot (2x)^2\cdot 3+3\cdot (2x)\cdot3^2-3^3=0\quad\Leftrightarrow\quad (2x-3)^3=0\quad\Leftrightarrow\quad x=\frac32.\]

Найдите больший корень уравнения \(8x^3+12x^2+6x+1=0\) .

Заметим, что левая часть представляет из себя куб суммы: \[(2x)^3+3\cdot (2x)^2\cdot 1+3\cdot (2x)\cdot1^2+1^3=0\quad\Leftrightarrow\quad (2x+1)^3=0\quad\Leftrightarrow\quad x=-\frac12.\]

В ЕГЭ кубические уравнения встречаются как в профильном, так и в базовом уровне. Это значит, что уметь верно решать подобные задания необходимо каждому школьнику. Некоторые могут сказать, что количество баллов в ЕГЭ за решение уравнений третьей степени невелико и тратить на них время нецелесообразно. С этим трудно согласиться. Во-первых, в ЕГЭ крайне важен каждый бал, во-вторых, уравнения третьей степени не так уж и сложны, если уделить им должное внимание в ходе подготовки. Для того чтобы учащийся мог оперативно и, главное, правильно выполнить подобные задания, стоит воспользоваться нашим образовательным ресурсом.

«Школково» - это уникальная платформа, которая позволяет выпускникам из Москвы и других регионов с любым уровнем математических знаний научиться решать кубические уравнения и эффективно подготовиться к сдаче ЕГЭ. Прежде всего мы рекомендуем вам начать с повторения или изучения теоретического материала по данной теме. «Школково» представляет вниманию учащихся из Москвы и других городов, которые готовятся к ЕГЭ, по сути, авторское пособие, в котором ясно и доступно изложен материал по теме «Кубические уравнения».

Помимо изложения основных определений и формул, вы сможете познакомиться с примерами по теме и изучить способы их решения. При этом стоит отметить, что наши специалисты подобрали весьма интересные варианты. Для того чтобы вы научились уверенно решать экзаменационные задачи, нужна тренировка. Поэтому рекомендуем вам затем перейти в раздел «Каталог» и приступить к самостоятельной работе с уравнениями третьей степени.

X в третьей степени

Функция игрек равен икс в кубе

Свойства функции игрек равен икс в кубе

Функция игрек равен икс в кубе имеет следующие свойства:

2. Функция игрек равен икс в кубе возрастает на всей числовой прямой;

3. Область определения функции y = x 3 – вся числовая прямая;

4. Множество значений функции функции y = x 3 – вся числовая прямая.

График функции игрек равен икс в кубе

График функции y = x 3 называется кубическая парабола:

График функции y = x 3 построить вы можете сами прямо сейчас с помощью построителя графиков. Выберете в нём вид функции «Степенная: y = k * x n + b», значение «n» укажите равным трём и нажмите кнопку «Построить график».

Функция y = x 3 – это частный случай степенной функции.

Вот таковы свойства и график функции игрек равен икс в кубе.

Кубическое уравнение

Решение кубического уравнения по формуле Виета. Создан по запросу пользователя.

Канонический вид кубического уравнения:

Решать кубическое уравнение мы будем по формуле Виета.

Формула Виета - способ решения кубического уравнения вида

Калькулятор ниже, а описание формулы Виета - под ним

Кубическое уравнение

Кстати сказать, на других сайтах почему-то для решения кубических уравнений используют формулу Кардано, однако я согласен с Википедией в том, что формула Виета более удобна для практического применения. Так что почему везде формула Кардано - непонятно, разве что лень людям Гиперболические функции и Обратные гиперболические функции реализовывать. Ну мне не лень было.

Итак, формула Виета (из Википедии)

Обратите внимание, что по представлению формулы Виета а - второй коэффициент, а коэффициент перед x3 всегда считается равным 1. Калькулятор позволяет ввести а как коэффициент перед х3, но сразу же на него и делит уравнение, чтобы получить 1

Если S > 0, то вычисляем:

Если S < 0, то заменяем тригонометрические функции гиперболическими. Здесь возможны два случая в зависимости от знака Q

(пара комплексных корней)

(пара комплексных корней)

Если S = 0, то уравнение вырождено и имеет меньше 3 различных решений (второй корень кратности 2):

По этим формулам калькулятор и работает. Решает вроде правильно, хотя решения с мнимой частью не проверял. Если что, пишите.

Корни и степени

Степень

Степенью называется выражение вида: , где:

Определем понятие степени, показатель которой - натуральное число (т.е. целое и положительное).

  1. По определению: .
  2. Возвести число в квадрат - значит умножить его само на себя:
  3. Возвести число в куб - значит умножить его само на себя три раза: .

Возвести число в натуральную степень - значит умножить число само на себя раз:

Степень с целым показателем

Если показателем степени является целое положительное число:

Возведение в нулевую степень:

Если показателем степени является целое отрицательное число:

Прим: выражение не определено, в случае n ≤ 0. Если n > 0, то

Степень с рациональным показателем

Свойства степеней

Корень

Уравнение имеет два решения: x=2 и x=-2. Это числа, квадрат которых равен 4.

Рассмотрим уравнение. Нарисуем график функции и увидим, что и у этого уравнения два решения, одно положительное, другое отрицательное.

Но в данному случае решения не являются целыми числами. Более того, они не являются рациональными. Для того, чтобы записать эти иррациональные решения, мы вводим специальный символ квадратного корня.

Арифметический квадратный корень - это неотрицательное число, квадрат которого равен, a ≥ 0. При a < 0 - выражение не определено, т.к. нет такого действительного числа, квадрат которого равен отрицательному числу.

Корень из квадрата

Например, . А решения уравнения соответственно и

Кубический корень

Кубический корень из числа - это число, куб которого равен. Кубический корень определен для всех. Его можно извлечь из любого числа: .

Корень n-ой степени

Корень -й степени из числа - это число, -я степень которого равна.

  • Тогда, если a < 0 корень n-ой степени из a не определен.
  • Или если a ≥ 0, то неотрицательный корень уравнения называется арифметическим корнем n-ой степени из a и обозначается
  • Тогда уравнение имеет единственный корень при любом.

Корни и степени

Степенью называется выражение вида.

Здесь - основание степени, - показатель степени.

Степень с натуральным показателем

Проще всего определяется степень с натуральным (то есть целым положительным) показателем.

Выражения «возвести в квадрат» и «возвести в куб» нам давно знакомы.

Возвести число в квадрат - значит умножить его само на себя.

Возвести число в куб - значит умножить его само на себя три раза.

Возвести число в натуральную степень - значит умножить его само на себя раз:

Степень с целым показателем

Показатель степени может быть не только натуральным (то есть целым положительным), но и равным нулю, а также целым отрицательным.

Это верно для. Выражение не определено.

Определим также, что такое степень с целым отрицательным показателем.

Конечно, все это верно для, поскольку на ноль делить нельзя.

Заметим, что при возведении в минус первую степень дробь переворачивается.

Показатель степени может быть не только целым, но и дробным, то есть рациональным числом. В статье «Числовые множества» мы говорили, что такое рациональные числа. Это числа, которые можно записать в виде дроби, где - целое, - натуральное.

Здесь нам понадобится новое понятие - корень -степени. Корни и степени - две взаимосвязанные темы. Начнем с уже знакомого вам арифметического квадратного корня.

Арифметический квадратный корень

Уравнение имеет два решения: и.

Это числа, квадрат которых равен.

А как решить уравнение?

Если мы нарисуем график функции, то увидим, что и у этого уравнения есть два решения, одно из которых положительно, а другое отрицательно.

Но эти решения не являются целыми числами. Более того, они не являются рациональными. Для того чтобы записать эти решения, мы вводим специальный символ квадратного корня.

Арифметический квадратный корень из числа - это такое неотрицательное число, квадрат которого равен.

Запомните это определение.

Арифметический квадратный корень обозначается.

1) Квадратный корень можно извлекать только из неотрицательных чисел

2) Выражение всегда неотрицательно. Например, .

Перечислим свойства арифметического квадратного корня:

Запомним, что выражение не равно. Легко проверить:

Получился другой ответ.

Кубический корень

Аналогично, кубический корень из - это такое число, которое при возведении в третью степень дает число.

Например, так как;

Обратите внимание, что корень третьей степени можно извлекать как из положительных, так и из отрицательных чисел.

Теперь мы можем дать определение корня -ной степени для любого целого.

Корень -ной степени

Корень -ной степени из числа - это такое число, при возведении которого в -ную степень получается число.

Заметим, что корень третьей, пятой, девятой - словом, любой нечетной степени, - можно извлекать как из положительных, так и из отрицательных чисел.

Квадратный корень, а также корень четвертой, десятой, в общем, любой четной степени можно извлекать только из неотрицательных чисел.

Итак, - такое число, что. Оказывается, корни можно записывать в виде степеней с рациональным показателем. Это удобно.

Сразу договоримся, что основание степени больше.

Выражение по определению равно.

При этом также выполняется условие, что больше.

Запомним правила действий со степенями:

При перемножении степеней показатели складываются

При делении степени на степень показатели вычитаются

При возведении степени в степень показатели перемножаются

Покажем, как применяются эти формулы в заданиях ЕГЭ по математике:

Внесли все под общий корень, разложили на множители, сократили дробь и извлекли корень.

Здесь мы записали корни в виде степеней и использовали формулы действий со степенями.

Звоните нам: (бесплатный звонок по России) (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

Позвоните сейчас и мы подарим скидку 25% на первый месяц занятий на курсах! Звоните:

Для нормального функционирования и Вашего удобства, сайт использует файлы cookies. Это совершенно обычная практика.Продолжая использовать портал, Вы соглашаетесь с нашей Политикой конфиденциальности.

Изложено, как решать кубические уравнения. Рассмотрен случай, когда известен один корень. Методы поиска целых и рациональных корней. Применение формул Кардано и Виета для решения любого кубического уравнения.

Содержание

Здесь мы рассматриваем решение кубических уравнений вида
(1) .
Далее считаем, что - это действительные числа.


(2) ,
то разделив его на , получаем уравнение вида (1) с коэффициентами
.

Уравнение (1) имеет три корня: , и . Один из корней всегда действительный. Действительный корень мы обозначаем как . Корни и могут быть либо действительными, либо комплексно сопряженными. Действительные корни могут быть кратными. Например, если , то и - это двукратные корни (или корни кратности 2), а - простой корень.

Если известен один корень

Пусть нам известен один корень кубического уравнения (1). Обозначим известный корень как . Тогда разделив уравнение (1) на , получим квадратное уравнение. Решая квадратное уравнение, найдем еще два корня и .

Для доказательства воспользуемся тем, что кубический многочлен можно представить в виде:
.
Тогда, разделив (1) на , получаем квадратное уравнение.

Примеры деления многочленов представлены на странице
“Деление и умножение многочлена на многочлен уголком и столбиком ”.
Решение квадратных уравнений рассмотрено на странице
“Корни квадратного уравнения ”.

Если один из корней - целый

Если исходное уравнение имеет вид:
(2) ,
и его коэффициенты , , , - целые числа, то можно попытаться найти целый корень. Если это уравнение имеет целый корень, то он является делителем коэффициента . Метод поиска целых корней заключается в том, что мы находим все делители числа и проверяем, выполняется ли для них уравнение (2). Если уравнение (2) выполняется, то мы нашли его корень. Обозначим его как . Далее делим уравнение (2) на . Получаем квадратное уравнение. Решая его, находим еще два корня.

Примеры определения целых корней даны на странице
Примеры разложения многочленов на множители > > > .

Поиск рациональных корней

Если в уравнении (2) , , , - целые числа, причем , и целых корней нет, то можно попытаться найти рациональные корни, то есть корни вида , где и - целые.

Для этого умножим уравнение (2) на и сделаем подстановку :
;
(3) .
Далее ищем целые корни уравнения (3) среди делителей свободного члена .

Если мы нашли целый корень уравнения (3), то, возвращаясь к переменной , получаем рациональный корень уравнения (2):
.

Формулы Кардано и Виета для решения кубического уравнения

Если нам не известен ни один корень, и целых корней нет, то найти корни кубического уравнения можно по формулам Кардано.

Рассмотрим кубическое уравнение:
(1) .
Сделаем подстановку:
.
После этого уравнение приводится к неполному или приведенному виду:
(4) ,
где
(5) ; .

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.
Г. Корн, Справочник по математике для научных работников и инженеров, 2012.

Уравнение третьей степени с комплексными коэффициентами имеет вид:

Подвергнем (1) упрощению – сделаем член с квадратом неизвестного равным нулю, для чего положим и найдем .

Таким образом, сделав в (1) подстановку , получим неполное кубическое уравнение:

Чтобы найти корни уравнения (2), положим , где u и v – два новых вспомогательных неизвестных. (2) запишем в виде:

раскрыв скобки и перегруппировав члены, получим:

Потребуем, чтобы или . Это требование всегда выполнимо, т.к. оно вместе с условием означает, что u и v являются корнями квадратного уравнения.

Тогда уравнение (2) приведется к уравнениям:

Отсюда согласно формулам Виета являются корнями квадратного уравнения:

Итак, неполное уравнение (2) решено в радикалах:

(3) – формула Кардана.

Формула Кардана состоит из суммы двух кубических радикалов. Каждый из них имеет три значения. Комбинируя значения u и v , получим девять сумм u+ v ,но среди них только три корня уравнения (2). Это будут те суммы u+ v, у которых u и v связаны соотношением:

Обозначим через , какую-нибудь пару значений , удовлетворяющих (4), а через - один из первообразных корней третьей степени из единицы. Например: .

Тогда , . Найдем . Так как и , то

Откуда

Откуда .

Таким образом, получим все значения корней неполного кубического уравнения (2):

Учитывая, что , , имеем: (5)

Пример. Определить по формуле Кардана корни уравнения:

Обозначим - выражение стоящее под знаком квадратного радикала в формуле Кардана.

Предложение Если , то уравнение (2) имеет три различных корня.

Покажем, что , , , где - первообразный корень третьей степени из 1.

Пусть , , . Возведя обе части равенства в куб получим: , т.е. квадратное уравнение имеет два равных корня: , что невозможно, т.к. дискриминант этого квадратного уравнения . Тогда из формул (5) , т.к. при . Если бы , то , т.е.

Что при невозможно.

Аналогично обнаруживается, что .

Если при и , то

Так как ,то . Следовательно .

Откуда одно из значений : . Соответствующее значение :

Обращаясь к формулам (5) получим:

Предложение: При ( и ) уравнение (2) имеет два равных корня: , и в этом случае корни (2) можно найти, не прибегая к извлечению корней второй и третьей степеней, а именно: , (6)


Пример: Решить уравнение: .

УРАВНЕНИЯ ТРЕТЬЕЙ СТЕПЕНИ С ДЕЙСТВИТЕЛЬНЫМИ КОЭФФИЦИЕНТАМИ.

Пусть (7) – неполное кубическое уравнение третьей степени с действительными коэффициентами и .

Теорема: Если , то уравнение (7) имеет один действительный и два мнимых сопряженных корня;

если , то корни уравнения (7) действительны и хотя бы один из них кратный;

если , то то все корни (7) действительны и различны.

1. . Так как , то все три корня уравнения (7) должны быть различными.

Рассмотрим выражение .

Так как , то - действительное число. Следовательно, одно из значений и должно быть действительным. Пусть , тогда . На основании (5) уравнение (7) имеет только один действительный корень: , а два остальных корня будут сопряженными чисто комплексными числами:

2. . При , , уравнение имеет два равных корня. Так как (7) уравнение с действительными коэффициентами, то при , , все три корня уравнения действительны, причем два из них равны.

При , , уравнение (7) имеет три равных нулю корня: .

3. (неприводимый случай). Так как , то , где . Тогда . Найдем модуль и аргумент подкоренного выражения:

Полагая получим:

Произведение комплексного числа на сопряженное равно квадрату модуля :

Т.е. , но . Значит . Тогда

Тогда корни (7) имеют вид:

Итак, в случае уравнение (7) имеет три действительных корня.

Недостаток формулы Кардана состоит в том, что она часто представляет рациональные корни в иррациональном виде.

Пример. Очевидно - действительный корень.

(один действительный и два сопряженных мнимых корня)

По формуле Кардана: - иррациональные числа

При приближенных вычислениях , . Вследствие этого недостатка рациональные корни кубического уравнения с рациональными коэффициентами определяют не по формуле Кардана.

УРАВНЕНИЯ ЧЕТВЕРТОЙ СТЕПЕНИ.

Пусть (1) –

Уравнение четвертой степени с комплексными коэффициентами. Наиболее ранний способ решения (1) принадлежит Феррари ученику Кардана.

Подберем вспомогательное неизвестное так, чтобы правая часть (2) превратилась в полный квадрат. Что возможно при условии, что , где , , . Если , сравнивая коэффициенты при : , , , откуда . Обратно, если , то .

Подставляя в равенство выражения А, В,С, находим, что .

(3)- кубическая резольвента.

Пусть - какой-нибудь корень уравнения (3). Подставляя в (2) в правой части получим полный квадрат:

Эти два квадратных уравнения дадут все четыре корня уравнения (1). Итак, решение уравнения четвертой степени сводится к решению одного уравнения третьей степени и двух уравнений второй степени, и так же решается в радикалах. При нахождении корней уравнения типа (1) по способу Феррари проводят последовательно все преобразования, не запоминая кубическую резольвенту.

Пример.

- (члены степени не больше двух), оставляя

Кубическое уравнение – алгебраическое уравнение третьей степени. Общий вид кубического уравнения: ах3 + bх2 + сх + d = 0, а ≠ 0

Заменяя в этом уравнении х новым неизвестным у, связанным с х равенством х = у – (b/3а), кубическое уравнение можно привести к более простому (каноническому) виду: у3 + pу + q = 0, где p = - b2 + с, q = 2b – bс + d

3а2 а 27а3 3а2 а решение этого уравнения можно получить с помощью формулы Кардано.

1. 1 История кубических уравнений

Термин «кубическое уравнение» ввели Р. Декарт (1619 г.) и У. Оутред (1631г.).

Первые попытки найти решения задач, сводящихся к кубическим уравнениям, были сделаны математиками древности (например, задачи об удвоении куба и трисекции угла).

Математики средневековья Востока создали довольно развитую теорию (в геометрической форме) кубических уравнений; наиболее обстоятельно она изложена в трактате доказательств задач алгебры и алмукабалы «Омара Хайя» (около 1070 года), где рассмотрен вопрос о нахождении положительных корней 14 видов кубических уравнений, содержащих в обеих частях только члены с положительными коэффициентами.

В Европе впервые в тригонометрической форме решение одного случая кубического уравнения дал Виет (1953 г.).

Первое решение в радикалах одного из видов кубических уравнений удалось найти С. Ферро (около 1515 г.), однако оно не было опубликовано. Открытие независимо повторили Тарталья (1535 г.), указав правило решения еще двух других видов кубических уравнений. Опубликованы эти открытия в 1545 году Дж. Кардано, который упомянул об авторстве Н. Тартальи.

В конце XV в. профессор математики в университетах Рима и Милана Лука Пачоли в своем знаменитом учебнике «Сумма знаний по арифметике, геометрии, отношениям и пропорциональности» задачу о нахождении общего метода для решения кубических уравнений ставил в один ряд с задачей о квадратуре круга. И все же усилиями итальянских алгебраистов такой метод вскоре был найден.

Начнём с упрощения

Если кубическое уравнение общего вида ах3 + bх2 + сх + d = 0, где а ≠ 0, разделить на а, то коэффициент при х3 станет равен 1. Поэтому в дальнейшем будем исходить из уравнения х3 + Pх2 + Qх + R = 0. (1)

Так же как в основе решения квадратного уравнения лежит формула квадрата суммы, решение кубического уравнения опирается на формулу куба суммы:

(а + b)3 = а3 + 3а2b + 3аb2 + b3.

Чтобы не путаться в коэффициентах, заменим здесь а на х и перегруппируем слагаемые:

(х + b)3 = х3 + 3bх2 + 3b2х + b3. (2)

Мы видим, что надлежащим образом b, а именно взяв b = P/3, можно добиться того, что правая часть этой формулы будет отличаться от левой части уравнения х3 + Pх2 + Qх + R = 0 только коэффициентом при х и свободным членом. Сложим уравнение х3 + Pх2 + Qх + R = 0 и (х + b)3 = х3 + 3bх2 + 3b2х + b3 и приведём подобные:

(х + b)3 + (Q – 3b2)х + R – b3 = 0.

Если здесь сделать замену y = х + b, получим кубическое уравнение относительно у без члена с у2: у3 + ру + q = 0.

Итак, мы показали, что в кубическом уравнении х3 + Pх2 + Qх + R = 0 с помощью подходящей подстановки можно избавиться от члена, содержащего квадрат неизвестного. Поэтому теперь будем решать уравнение вида х3 + рх + q = 0. (3)

1. 2 История формулы Кардано

Формула Кардано названа по имени Дж. Кардано, впервые опубликовавшего её в 1545 году.

Автор этой формулы Никколо Тарталья. Он создал это решение в 1535 г. специально для участия в математическом состязании, в котором, естественно, победил. Тарталья, сообщая формулу (в стихотворной форме) Кардано, представил только ту часть решения кубического уравнения, в которой корень имеет одно (действительное) значение.

Результаты Кардано в этой формуле относятся к рассмотрению так называемого неприводимого случая, в котором уравнение имеет три значения (действительных значений, в те времена не было ни мнимых, ни даже отрицательных чисел, хотя попытки в этом направлении были). Однако, вопреки тому, что Кардано указал в своей публикации на авторство Тартальи, формулу называют именем Кардано.

1. 3 Формула Кардано

Теперь давайте еще раз обратимся к формуле куба суммы, но запишем ее иначе:

(а + b)3 = а3 + b3 + 3аb(а + b).

Сравните эту запись с уравнением х3 + рх + q = 0 и попробуйте установить связь между ними. Подставим в нашу формулу х = а + b: х3 = а3 + b3 + 3аbх, или х3 – 3аbх – (а3 + b3) = 0

Теперь уже ясно: для того, чтобы найти корень уравнения х3 + рх + q = 0, достаточно решить систему уравнений а3 + b3 = - q, а3 + b3 = - q, или

3аb = - p,а3b3 = - p 3,

3 и взять в качестве х сумму а и b. Заменой и = а3, v = b3 эта система приводится к совсем простому виду: и + v = - q, иv = - p 3.

Дальше можно действовать по-разному, но все «дороги» приведут к одному и тому же квадратному уравнению. Например, согласно теореме Виета, сумма корней приведенного квадратного уравнения равна коэффициенту при х со знаком минус, а произведение – свободному члену. Отсюда следует, что и и v – корни уравнения t2 + qt – (p/3)3 = 0.

Выпишем эти корни: t1,2 = - q ± q 2 + p 3.

Переменные а и b равны кубическим корням из t1 и t2, а искомое решение кубического уравнения х3 + рх + q = 0 – сумме этих корней: х = 3 – q + q 2 + p 3+ 3 – q – q 2 + p 3.

Эта формула известна как формула Кардано.

Решаем уравнения

Прежде, чем посмотреть на формулу Кардано в работе, поясним, как по одному корню кубического уравнения х3 + рх + q = 0 найти другие его корни, если они есть.

Пусть известно, что наше уравнение имеет корень h. Тогда его левую часть можно разложить на линейный и квадратный множители. Делается это очень просто. Подставляем в уравнение выражение свободного члена через корень q = - h3 – ph и пользуемся формулой разности кубов:

0 = х3 – h3 + px – ph = (x – h)(x2 + hx + h2) + p(x - h) = (x – h)(x2 + hx + h2 + p).

Теперь можно решить квадратное уравнение х2 + hx + h2 + p = 0 и найти остальные корни данного кубического уравнения.

Итак, мы во всеоружии и, казалось бы, можем справиться с любым кубическим уравнением. Давайте попробуем свои силы.

1. Начнем с уравнения х3 + 6х – 2 = 0

Подставляем в формулу Кардано p = 6 и q = -2 и после несложных сокращений получаем ответ: х = 3√4 – 3√2. Что ж, формула вполне симпатичная. Только перспектива выносить множитель х – (3√4 – 3√2) из левой части уравнения и решать остающееся квадратное уравнение со «страшными» коэффициентами для вычисления других корней не очень-то вдохновляет. Однако, присмотревшись к уравнению внимательнее, можно успокоиться: функция в левой части строго возрастает и поэтому может обращаться в нуль только один раз. Значит, найденное число – единственный действительный корень уравнения.

у у = х3 + 6х – 2

3√4 – 3√2 х

Рис. 1 График функции у = х3 + 6х – 2 пересекает ось абсцисс в одной точке - 3√4 – 3√2.

2. Следующий пример – уравнение х3 + 3х – 4 = 0.

Формула Кардано дает х = 3 2 + √5 + 3 2 - √5.

Как и в предыдущем примере, мы видим, что этот корень единственный. Но не нужно обладать сверхпроницательностью, чтобы, глядя на уравнение, угадать его корень: х = 1. Приходится признать, что формула выдала обычную единицу в таком причудливом виде. Между прочим, упростить это громоздкое, но не лишенное изящества выражение алгебраическими преобразованиями не удается – кубические иррациональности в нем неустранимы.

3. Ну а теперь возьмем уравнение, заведомо имеющее три действительных корня. Составить его легко – просто перемножим три скобки вида х – b. Нужно только позаботиться, чтобы сумма корней равнялась нулю, ведь, по общей теореме Виета, она отличается от коэффициента при х2 только знаком. Самый простой набор таких корней – это 0, 1 и – 1.

Применим формулу Кардано к уравнению х (х – 1)(х + 1) = 0, или х3 – х = 0.

Полагая в ней p = -1 и q = 0, получаем х = 3 √ - 1/27 + 3 - √ - 1/27.

у у = х (х - 1)(х + 1)

Рис. 2 Уравнение х (х – 1)(х + 1) = 0 имеет три действительных корня: -1, 0 и 1. Соответственно график функции у = х (х – 1)(х + 1) пересекает ось абсцисс в трех точках.

Под знаком квадратного корня появилось отрицательное число. Такое бывает и при решении квадратных уравнений. Но квадратное уравнение в этом случае не имеет действительных корней, а у кубического их целых три!

Более тщательный анализ показывает, что мы попали в эту ловушку не случайно. Уравнение х3 + px + q = 0 имеет три действительных корня тогда и только тогда, когда выражение Δ = (q/2)2 + (p/3)3 под квадратным корнем в формуле Кардано отрицательно. Если Δ > 0, то действительный корень один (рис. 3, б), а если Δ = 0, то их два (один из них – двукратный), за исключением случая p = q = 0, когда все три корня сливаются.

у Δ 0 у = -pх - q у = х3

0 х 0 х у = -pх - q у = х3 а) б)

Рис. 3 Кубическое уравнение х3 + px + q = 0 можно представить в виде х3 = -px – q. Отсюда видно, что корням уравнения будут соответствовать абсциссы точек пересечения двух графиков: у = х3 и у = -px – q. Если Δ 0 – один.

1. 4 Теорема Виета

Теорема Виета. Если целое рациональное уравнение степени n, приведенное к стандартному виду, имеет n различных действительных корней х1, х2,. хn, то они удовлетворяют равенствам: х1 + х2 + + хn = - а1 , а0 х1х2 + х1х3 + + хn-1хn = а2 а0 х1 · х2 · · хn = (-1)nаn.

Для корней уравнения третьей степени а0х3 + а1х2 + а2х + а3 = 0, где а0 ≠ 0 справедливы равенства х1 + х2 + х3 = - а1, а0 х1х2 + х1х3 + х2х3 = а2, а0 х1х2х3 = - а3.

1. 5 Теорема Безу. Схема Горнера

Решение уравнений тесно связано с разложением многочленов на множители. Поэтому при решении уравнений важно все, что связано с выделением в многочлене линейных множителей, т. е. с делением многочлена А(х) на двучлен х – α. Основой многих знаний о делении многочлена А(х) на двучлен х – α, является теорема, принадлежащая французскому математику Этьену Безу (1730-1783 гг.) и носящая его имя.

Теорема Безу. Остаток от деления многочлена А(х) на двучлен х – α равен А(α) (т. е. значению многочлена А(х) при х = α).

Найдем остаток от деления многочлена А(х) = х4 – 6х3 + 8 на х + 2.

Решение. По теореме Безу остаток от деления на х + 2 равен А(-2) = (-2)4 – 6(-2)3 + 8 = 72.

Удобный способ нахождения значений многочлена при заданном значении переменной х ввел английский математик Вильямс Джордж Горнер (1786-1837 гг.). Этот способ впоследствии получил название схемы Горнера. Он состоит в заполнении некоторой таблицы из двух строк. Например, чтобы вычислить А(-2) в предыдущем примере, в верхней строке таблицы перечисляем коэффициенты данного многочлена, записанного в стандартной форме х4 – 6х3 + 8 = х4 + (-6)х3 + 0 · х2 + 0 · х + 8.

Коэффициент при старшей степени дублируем в нижней строке, а перед ним записываем значение переменной х = -2, при котором вычисляется значение многочлена. Получается следующая таблица:

Пустые клетки таблицы заполняем по следующему правилу: крайнее справа число нижней строки умножается на -2 и складывается с числом, стоящим над пустой клеткой. По этому правилу в первой пустой клетке стоит число (-2) · 1 + (-6) = -8, во второй клетке ставится число (-2) · (-8) + 0 = 16, в третьей клетке – число (-2) · 16 + 0 = - 32, в последней клетке – число (-2) · (-32) + 8 = 72. Полностью заполненная по схеме Горнера таблица выглядит так:

2 1 -8 16 -32 72

Число в последней клетке и есть остаток от деления многочлена на х + 2, А(-2) = 72.

На самом деле из полученной таблицы, заполненной по схеме Горнера, можно записать не только остаток, но и неполное частное

Q(x) = x3 – 8x2 + 16x – 32, так как число, стоящее на второй строке (не считая с последнего), - это коэффициенты многочлена Q(x) – неполного частного от деления на х + 2.

Решим уравнение х3 – 2х2 – 5х + 6 = 0

Выпишем все делители свободного члена уравнения: ± 1, ± 2, ± 3, ± 6.

х = 1, х = -2, х = 3

Ответ: х = 1, х = -2, х = 3

2. ЗАКЛЮЧЕНИЕ

Сформулирую основные выводы о проделанной работе.

В процессе работы я познакомился с историей развития проблемы решения уравнения третьей степени. Теоретическая значимость полученных результатов заключается в том, что осознанно занимает место формулы Кардано в решении некоторых уравнений третьей степени. Я убедился в том, что формула решения уравнения третьей степени существует, но из-за её громоздкости она не популярна и не очень надежна, так как не всегда достигает конечного результата.

В дальнейшем можно рассматривать такие вопросы: как узнать заранее, какие корни имеет уравнение третьей степени; можно ли кубическое уравнение решить графическим способом, если можно, то как; как оценить приближенно корни кубического уравнения?

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

ВВЕДЕНИЕ

П.Л. Чебышев, величайшийрусский математик и механик, основоположник петербургской математической школы, уроженец Калужской губернии, писал в статье «О втором томе «Истории» Полевого» о людях, способных угадать и схватить суть явлений:

«Ум человеческий, по простонародному выражению, не пророк, а угадчик, он видит общий ход вещей и может выводить из оного глубокие предположения, часто оправданные временем…».

В 1838 году, участвуя в студенческом конкурсе, П.Л. Чебышев получил серебряную медаль за работу по нахождению корнейуравнения n-ной степени. Оригинальная работа была закончена уже в 1838 году и сделана на основеалгоритма Ньютона.

Гипотеза: решение неполного уравнения третьей степени, корни которого не являются целыми, решается с помощью формулы П.Л. Чебышева рациональным способом.

Цель исследования: решить неполное уравнение третьей степени с помощью нескольких способов и определить наиболее рациональный из них.

Задачи исследования:

Ознакомиться с определением производной первого и второго порядка;

Научиться строить графики функций-многочленов третьей степени;

Применить к решению неполногоуравнения третьей степени формулу П.Л. Чебышева;

Применить к решению неполногоуравнения третьей степени известные способы;

Применить алгоритм уточнения корней многочлена, если известны грубо приближенно два значения его корня;

Из полученных способов решения выбрать наиболее рациональный.

ОБЗОР ЛИТЕРАТУРЫ

Производная функции

Предел функции в заданной точке, предельной для области определения функции - такая величина, к которой стремится значение рассматриваемой функции при стремлении ее аргумента к данной точке.

Производная функции — понятие дифференциального исчисления, характеризующее скорость изменения функции в данной точке. Определяется как предел отношения приращения функции к приращению её аргумента при стремлении приращения аргумента к нулю, если такой предел существует. Функцию, имеющую конечную производную (в некоторой точке), называют дифференцируемой (в данной точке).

Определение производной функции через предел.

Пусть в некоторой окрестности точки {displaystyle x_{0}in mathbb {R} } определена функция {displaystyle fcolon U(x_{0})subset mathbb {R} to mathbb {R} .} .Производной функции {displaystyle f} f в точке {displaystyle x_{0}} называется предел, если он существует,

Производная от первой производной называется производной второго порядка или второй производной.

Формула П.Л. Чебышева

Способы решения алгебраических уравнений высших степеней

Уравнения третьей (и выше) степеней могут быть решены способами:

Графическим, который становится тем сложнее, чем степень многочлена выше, так как график построить иногда труднее, чем найти соответствующие корни;

Оперативным, часто приближенный, но дающий возможность находить корни с большой точностью. Графический способ при оперативном способе является подсобным.

Теорема 1. Если имеется целый корень многочлена с целыми коэффициентами, когда при старшем члене коэффициент единица, то он является делителем свободного члена.

Теорема 2. Всякий многочлен нечетной степени на множестве действительных чисел имеет по крайней мере один действительный корень.

Номограммы

Номограмма (греч.νομοσ — закон) — графическое представление функции от нескольких переменных, позволяющее с помощью простых геометрических операций (например, прикладывания линейки) исследовать функциональные зависимости без вычислений. Например, решать квадратное уравнение без применения формул. Номография (от греч. nómos — закон и...графия), раздел математики, объединяющий теорию и практические методы построения номограмм - специальных чертежей, являющихся изображениями функциональных зависимостей. Особенность номограмм заключается в том, что каждый чертеж изображает заданную область изменения переменных и каждое из значений переменных в этой области изображено на номограмме определенным геометрическим элементом (точкой или линией); изображения значения переменных, связанных функциональной зависимостью, находятся на номограмме в определенном соответствии, общем для номограмм одного и того же типа.

Номограммы для решения уравнений. Для решения уравнений х α + р 0 х ß + q 0 = 0 используют номограммы из выравненных точек. Получить такую номограмму можно так: Нарисуем две вертикальные параллельные прямые - ось р с началом отсчётаА и ось q с началом отсчёта В (Рис. 1); на этом рисунке отрезок АВ перпендикулярен осям p,q , но это вовсе необязательно).

Возьмём произвольные числа α, ß и положительное число а . На оси р возьмём точку С с координатой -а α-ß на оси р - точку D с координатой α . Пусть AD BC =E . Проведём через Е произвольную прямую, не параллельную осям р , q . Обозначим координату пересечения М это прямой с осью р через р 0 , пересечения N с осью q - через q . Тогда а α + р 0 α ß + q 0 = 0 (1), т.е. число а является корнем уравнения х α + р 0 х ß + q 0 = 0 (2). Прямая MN может пересекаться с осями р , q одним из трёх способов: р 0 < 0, q 0 > 0 (рис.1); р 0 > 0, q 0 < 0 (рис. 2); р 0 < 0, q 0 < 0 (рис.3).

Рис. 2 Рис. 3

Докажем равенство (1) для случая, изображённого на рис. 1 (остальные два случая рассматриваются аналогично). Из подобия треугольников AEC и BED имеем

что и даёт (1). Зафиксируем произвольные α, ß и рассмотрим всевозможные уравнения х α + рх ß + q = 0 . Номограмма для отыскания положительных корней таких уравнений рисуется следующим образом: 1) параметру а придаются разные положительные значения и для каждого из них строится точкаЕ так, как рассказано выше; 2) полученные точки, помеченные соответствующими значениями параметра, соединяются плавной кривой Г (рис.4).

Теперь при помощи этой номограммы приближённо можно найти положительные корни конкретного уравнения х α + р 0 х ß + q 0 = 0, для этого надо на оси р взять точку M с координатой р 0 , на оси q - точку N с координатой q 0 и провести прямую MN . Каждая точка пересечения прямой MN с кривой Г даёт, в силу (1), положительный корень уравнения (2). Точки, соответствующие коэффициентам p, q уравнения, и точки, соответствующие искомым положительным корням уравнения х α + рх ß + q =0, лежат на одной прямой.

Алгоритм уточнения корней многочлена, если известны грубо приближенно два значения его корня

Теорема. Зная два приближенных значения и многочлена, можно получать улучшенные приближенные значения по рекуррентной формуле:

РЕШЕНИЕ НЕПОЛНОГО УРАВНЕНИЯ ТРЕТЬЕЙ СТЕПЕНИ

Пример решения уравнения третьей степени

Пусть дано уравнение

Решение 1.

Так как левая часть уравнения-многочлен третьей (нечетной) степени, то на множестве действительных чисел имеет по крайней мере один действительный корень, т.е. эти числа являются делителями свободного члена 1.

Имеем 1 3 -5 1+1=-3 и значит, целых корней нет.

Может быть, рациональный корень? Нет, так как многочлен с коэффициентом при старшем члене 1 не имеет и целых корней.

Значит, предположение неверное - корень иррациональный, найдем его приближенно, установив интервал, в котором он находится.

Составим таблицу 1, давая значения переменной х и вычисляя значения функции у :

Таблица 1

Уже найден интервал, имеем корень отрицательный, заключенный в границах:

Второй интервал, имеем корень положительный, заключенный в границах

Третий интервал, имеем положительный корень, заключенный в границах

Больше находить корни не следует, так как уравнение третьей степени не может иметь более трех корней.

Функция непрерывна на R и дифференцируема на R .

График функции пересекает ось Оу в точке.

Производная функции равна

Критические точки 1 рода:

Исследуем функцию на монотонность:

Применили формулу Бернулли для вычисления приближенного значения

Дадим графическое изображение функции, (Рис. 6) которое несколько уточняет значение иррациональных корней, давая рациональные приближения:

Решение 2.

Преобразуем исходное уравнение к виду:

Решим это уравнение графическим способом.

Введем две функции:

Построим графики данных указанных функций (Рис. 7):

Решение 3.

Применим формулу П.Л. Чебышева

Используем график функции (Рис. 6)

Видно, что один из корней уравнения расположен близко к

Найдём производные первого и второго порядка данной функции:

Произведем вычисления:

Применим формулу:

Остальные корни проще найти, используя свойства многочленов:

1). Если корень многочлена, то делится на.

2). При делении многочлена на получается остаток, равный значению этого многочлена при.

3). Схемой Горнера, где (Таблица 2):

Таблица 2

Получили остаток деления 0,008 .

Делитель приравниваем к нулю:

Ответ: -2,33; 0,2; 2,13.

Решение 4.

Решим данное уравнение при помощи этой номограммы (Рис. 8), выполнив соответствующие расчёты:

Построим отрезок. Он пересечет полученный график в точках с координатами.

Для получения третьего корня изменим знак х на -х , получаем

Найдем отрицательный корень уравнения, построив отрезок, он пересекает график функции в точке.

Ответ: -2,3; 0,25; 2,2.

Проверим полученные корни с помощью Интернет ресурсов: сайта

Решение уравнений бесплатно - Калькулятор Онлайн Обычные уравнения

Ответы продемонстрированы на Рис. 9 и Рис. 10:

Ответ: 0,2; 2,13; -2,33.

Уточним один из корней многочлена, полученные в Решении 4 с помощью алгоритма уточнения корней многочлена, если известны грубо приближенно два значения его корня.

    Возьмём, .

Можно продолжить уточнение приближенного значения корня. Примем за приближенного значения корня число.

ЗАКЛЮЧЕНИЕ

Проанализируем использованные способы решения уравнения (Таблица 3):

Способ решения

Недостатки

Преимущества

Построение графика функции и определение приближенного значения нулей функции с помощью таблицы зависимости х оту .

Времяемкий, встречается проблема оценивания значения иррационального числа. Погрешность в нахождении одного из трех корней.

Наглядный.Интересно оценивание корней с помощью свойства непрерывных функций (знакопостоянство и нули функции). Может быть применен к большинству алгебраических уравнений.

Графический способ решения уравнения

Неточный. Погрешность в нахождении одного из трех корней.

Наглядный, дает право выбора введения вспомогательных функций.

Применение формулы П.Л. Чебышева

Громоздкие вычисления, чтобы их избежать прибегли к теории многочленов для нахождения двух корней.

Применение номограммы

Времяемкий, требует точности в построении графика функции, в масштабе, аккуратности.

Корни найдены достаточно точно.

Таблица 3

Итак, наиболее рациональным оказался способ с применением формулы Чебышева.

Из анкетирования, проведенного в 11 классе, было выяснено, что формула Чебышева и номограммама - это понятия, незнакомые выпускникам, учащимся физико-математического профиля. Оценивание корней уравнения с помощью таблицы с применением свойстванепрерывности функции оказалось новым для 80% учащихся.

Таким образом, умение решать неполное алгебраическое уравнение, имеющего нерациональные корни, является актуальным и, как показала практика, проблематичным.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ И ЛИТЕРАТУРЫ

  1. Предел функции —Режим доступа: Википедия ru.wikipedia.org(дата обращения 20.07.2018)
  2. Производная функции — Режим доступа:Википедияru.wikipedia.org(дата обращения 20.07.2018)

  3. Урок-игра "Победитель простых чисел - П.Л. Чебышёв...- Режим доступа: открытыйурок.рф(дата обращения 21.07.2018)
  4. Акири И., Гарит В. И др. Математика. Учебник для 11 класса - Кишинев.:PrutInternatijnal, 2004, 120-121 с.
  5. И.Клумова «Номограммы из выравненных точек». Научно-популярный журнал «Квант», №9 1978г.

    Решение уравнений бесплатно - Калькулятор Онлайн Обычные уравненияУпрощение выражений - Режим доступа: kontrolnaya-rabota.ru(дата обращения 19.07.2018)



Похожие статьи