Плоскость как алгебраическая поверхность первого порядка. Уравнение поверхности и уравнение линии в пространстве

Лекция 2. Плоскость как поверхность первого порядка. Уравнения плоскости и их исследование. Прямая в пространстве, взаимное расположение прямых в пространстве, плоскости и прямой в пространстве. Прямая на плоскости, уравнения прямой на плоскости, расстояние от точки до прямой на плоскости. Кривые второго порядка; вывод канонических уравнений, исследование уравнений и построение кривых. Поверхности II порядка, исследование канонических уравнений поверхностей. Метод сечений. 1

Элементы аналитической геометрии § 1. Плоскость. Имеем OXYZ и некоторую поверхность S F(x, y, z) = 0 z x (S) О y Определение 1: уравнение с тремя переменными называется уравнением поверхности S в пространстве, если этому уравнению удовлетворяют координаты каждой точки, лежащей на поверхности и не удовлетворяют координаты ни одной точки не лежащей на ней. 2

Пример. Уравнение (x - a)2 + (y - b)2 + (z - c)2 = R 2 (R > 0) определяем сферу с центром в точке C(a, b, c) и радиусом R. M M(x, y, z) – переменная точка M ϵ (S) |CM| = R C 3

Определение 2: Поверхность S называется поверхностью n-того порядка, если в некоторой декартовой системе координат она задается алгебраическим уравнением n-той степени F(x, y, z) = 0 (1) В примере (S) - окружность, поверхность второго порядка. Если S - поверхность n-того порядка, то F(x, y, z) - многочлен n-той степени относительно (x, y, z) Рассмотрим единственную поверхность 1 -го порядка – плоскость. Составим уравнение плоскости проходящей через точку M (x , y , z), с вектором нормали 4

Пусть M(x, y, z) - это произвольная (текущая) точка плоскости. M M 0 О α или в координатной форме: (2) Уравнение (2) - уравнение плоскости проходящей через точку М с данным вектором нормали. 5

D (*) (3) - полное уравнение плоскости Неполное уравнение плоскости. Если в уравнении (3) несколько коэффициентов (но не A, B, C одновременно) = 0, то уравнение называется неполным и плоскость α имеет особенности в расположении. Например если D = 0, то α проходит через начало координат. 6

Расстояние от точки М 1 до плоскости α М 1(x 1, y 1, z 1) α: M 1 d α M 0 приложим к точке M 0 K 7

- расстояние от точки M 1 до плоскости α Уравнение плоскости «в отрезках» Составим уравнение плоскости отсекающей на координатных осях ненулевые отрезки с C(0, 0, c) величинами a, b, c. В качестве возьмем B(0, b, 0) Составим уравнение для т. A с A(a, 0, 0) 8

-уравнение плоскости α "в отрезках" -уравнение плоскости, проходящей через точку А, перпендикулярно вектору нормали 9

§ 2. Общее уравнение прямой. Прямую в пространстве можно задать пересечением 2 -х плоскостей. (1) уравнение прямой Система вида (1) определяет прямую в пространстве, если коэффициенты A 1, B 1, C 1 одновременно непропорциональны A 2, B 2, C 2. 10

Параметрические и канонические уравнения прямой -произвольная точка прямой точка M M 0 Параметрическое уравнение t - параметр 11

Исключив t получим: - каноническое уравнение Система (3) определяет движение материальной точки, прямолинейное и равномерное из начального положения M 0(x 0, y 0, z 0) со скоростью в направлении вектора. 12

Угол между прямыми в пространстве. Условия параллельности и перпендикулярности. Пусть в пространстве две прямые L 1, L 2 заданы своими каноническими уравнениями: Тогда задача определения угла между этими прямыми сводится к определению угла

их направляющими векторами: Пользуясь определением скалярного произведения и выражением в координатах указанного скалярного произведения и длин векторов q 1 и q 2, получим для нахождения: 15

Условие параллельности прямых l 1 и l 2 соответствует коллинеарности q 1 и q 2, заключается в пропорциональности координат этих векторов, т. е. имеет вид: Условие перпендикулярности следует из определения скалярного произведения и его равенства нулю (при cos = 0) и имеет вид: l 1 l 2 + m 1 m 2 + n 1 n 2 = 0. 16

Угол между прямой и плоскостью: условия параллельности и перпендикулярности прямой и плоскости Рассмотрим плоскость P, заданную общим уравнением: Ах + By + Cz + D = 0, и прямую L, заданную каноническим уравнением: 17

Т. к. угол между прямой L и плоскостью П является дополнительным к углу между направляющим вектором прямой q = (l, m, n) и нормальным вектором плоскости n = (А, В, С), то из определения скалярного произведения q n = q n cos и равенства cos = sin (= 90 -), получим: 18

Условие параллельности прямой L и плоскости П (включающее в себя принадлежность L к П) эквивалентно условию перпендикулярности векторов q и n и выражается = 0 скалярного произведения этих векторов: q n = 0: Аl + Bm + Cn = 0. Условие перпендикулярности прямой L и плоскости П эквивалентно условию параллельности векторов n и q и выражается пропорциональностью координат этих векторов: 19

Условия принадлежности двух прямых к одной плоскости Две прямые в пространстве L 1 и L 2 могут: 1) пересекаться; 2) быть параллельными; 3) скрещиваться. В первых двух случаях прямые L 1 и L 2 лежат в одной плоскости. Установим условие принадлежности к одной плоскости двух прямых, заданных каноническими уравнениями: 20

Очевидно, что для принадлежности двух указанных прямых к одной плоскости необходимо и достаточно, чтобы три вектора = (х2 - х1, у2 - у1, z 2 - z 1); q 1 = (l 1, m 1, n 1) и q 2 = (l 2, m 2, n 2), были компланарны, для чего в свою очередь необходимо и достаточно, чтобы смешанное произведение указанных трех векторов = 0. 21

Записывая смешанные произведения указанных векторов в координатах получаем необходимое и достаточное условие принадлежности двух прямых L 1 и L 2 к одной плоскости: 22

Условие принадлежности прямой к плоскости Пусть есть прямая и плоскость Ах + Ву + Сz + D = 0. Эти условия имеют вид: Ах1 + Ву1 + Сz 1 + D = 0 и Аl + Вm + Сn = 0, первое из которых означает, что точка М 1(х1, у1, z 1), через которую проходит прямая, принадлежит плоскости, а второе – условие параллельности прямой и плоскости. 23

Кривые второго порядка. § 1. Понятие об уравнении линии на плоскости. Уравнение f (x, y) = 0 называется уравнением линии L в выбранной системе координат, если ему удовлетворяют координаты любой точки, лежащей на линии, и не удовлетворяют координаты ни одной точки, не лежащей на ней. 24

Src="https://present5.com/presentation/-127141277_437875303/image-25.jpg" alt="Пример: (x - a)2 + (y - b)2 = R 2 (R > 0)"> Пример: (x - a)2 + (y - b)2 = R 2 (R > 0) – уравнение окружности радиуса R и центром в точке С(a, b). Если 1.) 25

Линия L называется линией n-того порядка, если в некоторой декартовой системе координат она задается алгебраическим уравнением n-той степени относительно x и y. Мы знаем единственную линию 1 -го порядка – прямую: Ax + By + D = 0 Мы будем рассматривать кривые 2 -го порядка: эллипс, гиперболу, параболу. Общее уравнение линий 2 -ого порядка имеет вид: Ax 2 + By 2 + Cxy + Dy + Ex + F = 0 26

Эллипс (Э) Определение. Эллипс – множество всех точек плоскости, сумма расстояний которых до двух фиксированных точек плоскости F 1 и F 2, называемых фокусами, есть величина постоянная и большая расстояния между фокусами. Обозначим постоянную 2 а, расстояние между фокусами 2 с Проведем ось Х через фокусы, (а > с, а > 0, с > 0). ось Y через середины фокусного расстояния. Пусть М – произвольная точка эллипса, т. М ϵ Э r 1 + r 2 = 2 a (1), где r 1, r 2 – фокальные 27 радиусы Э.

Запишем (1) в координатной форме: (2) Это уравнение эллипса в выбранной системе координат. Упрощая (2) получим: b 2 = a 2 - c 2 (3) – каноническое уравнение эллипса. Можно показать, что (2) и (3) эквивалентны: 28

Исследование формы эллипса по каноническому уравнению 1) Эллипс – кривая 2 -го порядка 2) Симметрия эллипса. т. к. x и y входят в (3) лишь в четных степенях, то эллипс имеет 2 оси и 1 центр симметрии, которые в выбранной системе координат совпадают с выбранными осями координат и точкой О. 29

3) Расположение эллипса Т. е. весь Э расположен внутри прямоугольника, стороны которого x = ± a и y = ± b. 4) Пересечение с осями. A 1(-a; 0); A 2(a; 0); С ОХ: вершины эллипса С ОУ: B 1(0; b); B 2(0; -b); В силу симметрии эллипса рассмотрим его поведение (↓) лишь в I четверти. 30

Src="https://present5.com/presentation/-127141277_437875303/image-31.jpg" alt="Разрешив (3) относительно y получим: в I четверти x > 0 и эллипс убывает."> Разрешив (3) относительно y получим: в I четверти x > 0 и эллипс убывает. Вывод: Э – замкнутая кривая, овальная, имеющая четыре вершины. План построения Э. 1) Строим прямоугольник со сторонами 2 a, 2 b 2) Вписываем выпуклую овальную линию 31

Гипербола (Г) Определение: Г – множество всех точек плоскости, модуль разности расстояний которых до 2 -х фиксированных точек плоскости F 1 , F 2 есть величина постоянная и

Упрощая (1): (2) – каноническое уравнение Г. (1) и (2) – эквивалентны. Исследование гиперболы по каноническому уравнению 1) Г- линия 2 -го порядка 2) Г имеет две оси и один центр симметрии, которые в нашем случае совпадают с координатными осями и началом координат. 3) Расположение гиперболы. 34

Гипербола расположена вне полосы между прямыми x = a, x = -a. 4) Точки пересечения с осями. OX: OY: не имеет решений A 1(-a; 0); A 2(a; 0) – действительные вершины Г B 1(0; b); B 2(0; -b) – мнимые вершины Г 2 a – действительная ось Г 2 b – мнимая ось Г 35

5) Асимптоты гиперболы. В силу симметрии Г рассмотрим ее часть в I четверти. Разрешив (2) относительно y, получим: уравнение Г в I четверти x ≥ 0 Рассмотрим прямую: т. к. в I четверти x>0, то т. е. в I четверти при одной и той же абсциссе, ордината прямой > ординаты соответствующей точки Г, т. е. в I четверти Г лежит ниже этой прямой. Вся Г лежит внутри вертикального угла со сторонами 36

6) Можно показать, что в I ч. Г возрастает 7) План построения Г а) строим прямоугольник 2 a, 2 b б) проводим его диагонали в) отметим А 1, А 2 – действительные вершины Г и 38 впишем эти ветви

Парабола (П) Рассмотрим d (директрису) и F (фокус) на плоскости. Определение. П – множество всех точек плоскости, равноудаленных от прямой d и точки F (фокус) 39

d-директриса F-фокус XOY точка М П тогда, |MF| = |MN| (1) уравнение П, выбранной в системе координат Упрощая (1) получим y 2 = 2 px (2) – каноническое уравнение П. (1) и (2) эквивалентны 40

Исследование П по каноническому уравнению x 2=2 py x 2=-2 py y 2=2 px y 2=-2 px 41

§ 4. Цилиндры. Цилиндрические поверхности с образующими, параллельными координатным осями Через точку х линии L проведем прямую параллельную оси OZ. Поверхность, образованная этими прямыми называется цилиндрической поверхностью или цилиндром (Ц). Любая прямая параллельная оси OZ называется образующей. l - направляющая цилиндрической поверхности плоскости XOY. Z(x, y) = 0 (1) 42

Пусть М(x, y, z) – произвольная точка цилиндрической поверхности. Спроецируем ее на L. M 0 ϵ L => Z(x 0, y 0) = 0 (2) x = x 0 => Z(x, y) = 0 Mϵ Ц y = y 0 M ϵL 0 то есть координаты М удовлетворяют (1) очевидно, что если М Ц, то она не проектируется в точку М 0 ϵ L и следовательно, координаты М не будут удовлетворять уравнению (1), которое определяет Ц с образующей параллельной оси OZ в пространстве. Аналогично можно показать, что: Ф(x, z) = 0 в пространстве Ц || OY 43 (y, z) = 0 определяет в пространстве Ц || OX

Проекция пространственной линии на координатной плоскости Линию в пространстве можно задать параметрически и пересечением поверхностей. Одну и ту же линию можно задать ∩ различных поверхностей. Пусть пространственная линия L задается ∩ двух поверхностей α: S 1: Ф 1(x, y, z) = 0 S 2: Ф 2(x, y, z) = 0 уравнение L Ф 1(x, y, z) = 0 (1) Ф 2(x, y, z) = 0 Найдем проекцию L на плоскость XOY из уравнения (1) исключаем Z. Получим уравнение: Z(x, y) = 0 – в пространстве это уравнение Ц с образующей || OZ и направляющей L. 46

Проекция: L xy Z(x, y) = 0 Z=0 Поверхности второго порядка Эллипсоид – каноническое уравнение поверхности имеет вид: 1) Эллипсоид – поверхность второго порядка. 2) X, Y, Z входят в уравнение лишь в четных степенях => поверхность имеет 3 плоскости и 1 центр симметрии, которые в выбранной системе координат совпадают с координатными плоскостями и началом координат. 47

3) Расположение эллипсоида Поверхность заключена между || плоскостями с уравнениями x = a, x = -a. Аналогично т. е. вся поверхность заключена внутри прямоугольного параллелепипеда. х = ± а, y = ± b, z = ± с. Будем исследовать поверхность методом сечений – пересекая поверхность координатными плоскостями || координатным. В сечении будем получать линии, по форме которых будем судить о форме поверхности. 48

Пересечем поверхность плоскостью XOY. В сечении получим линию. - эллипс a и b – полуоси Аналогично с плоскостью YOZ -эллипс с полуосями b и с Плоскость || XOY Если h(0, с), то оси эллипса убывают от a и b до 0. 49

a = b = с - сфера Параболоиды а) Гиперболический параболоид – поверхность с каноническим уравнением: 1) Поверхность второго порядка 2) Так как x, y входят в уравнение лишь в четных степенях, то поверхность имеет плоскости симметрии, которые при данном выборе координат совпадают с 50 плоскостями XOZ, YOZ.

3) исследуем поверхность методом сечения седло пл. XOZ В сечении парабола симметричная оси OZ, восходящая. пл. YOZ 51

Src="https://present5.com/presentation/-127141277_437875303/image-53.jpg" alt="пл. ||XOY при h > 0 гиперболы, с действительной полуосью вдоль OX, при h"> пл. ||XOY при h > 0 гиперболы, с действительной полуосью вдоль OX, при h z ≥ 0, то есть, вся поверхность расположена над XOY. 4) исследуем поверхность методом сечения 53

б) Двуполостный гиперболоид 1) поверхность второго порядка 2) имеет 3 плоскости и 1 центр симметрии 3) расположение поверхности x 2 ≥ a 2 ; |x| ≥ a ; (a, b, c > 0) Поверхность состоит из двух частей, расположенных вне полосы между плоскостями с уравнениями x = a, x = -a 4) исследуем методом сечений (Самостоятельно!) 57

Конус второго порядка Конусом второго порядка называется поверхность, каноническое уравнение которой имеет вид: 1) поверхность второго порядка 2) имеет 3 плоскости и 1 центр симметрии 3) исследуем методом сечений пл. XOY 58

Src="https://present5.com/presentation/-127141277_437875303/image-59.jpg" alt="пл. ||XOY |h| –>∞ от 0 до ∞ пл. YOZ пара прямых, проходящих через"> пл. ||XOY |h| –>∞ от 0 до ∞ пл. YOZ пара прямых, проходящих через начало координат пл. XOZ пара прямых, проходящих через начало координат 59

60

В ближайших параграфах устанавливается, что поверх­ности первого порядка суть плоскости и только плоскости, и рассматриваются различные формы записи уравнений плос­костей.

198. Теорема 24. В декартовых координатах каждая плоскость определяется уравнением первой степени.

Доказательство. Считая заданной некоторую де- картову прямоугольную систему координат, рассмотрим произвольную плоскость а и докажем, что эта плоскость определяется уравнением первой степени. Возьмем на плос­кости а какую-нибудь точку М 0 (д: 0; у 0; z0); выберем, кроме того, какой угодно вектор (только не равный нулю!), перпендикулярный к плоскости а. Выбранный вектор обозначим буквой п, его проекции на оси координат -бук­вами А, В , С.

Пусть М{х; у; г)-произвольная точка. Она лежит на плоскости а в том и только в том случае, когда вектор MqM перпендикулярен к вектору п. Иначе говоря, точка Ж, ле­жащая на плоскости а, характеризуется условием:

Мы получим уравнение плоскости а, если выразим это условие через координаты х, у, z. С этой целью запишем координаты векторов М 0М и й:

М 0М={х-х 0; у-у 0; z-z0}, П={А; В; С}.

Согласно п° 165 признаком перпендикулярности двух век­торов является равенство нулю их скалярного произведения, т. е. суммы попарных произведений соответственных коор­динат этих векторов. Таким образом, М 0М J_ п в том и только в том случае, когда

A(x-x0)+B(y-y0) + C(z-ze) = 0. (1)

Это и есть искомое уравнение плоскости а, так как ему удовлетворяют координаты лг, у, z точки М в том и только в том случае, когда М лежит на плоскости а (т. е. когда луй J_«).

Раскрывая скобки, представим уравнение (1) в виде

Ах +By + Cz + (- А х 0 - Ву 0-Cz0) = 0.

Ax-\-By + Cz + D = 0. (2)

Мы видим, что плоскость а действительно определяется уравнением первой степени. Теорема доказана.

199. Каждый (не равный нулю) вектор, перпендикулярный к некоторой плоскости, называется нормальным к ней век­тором. Употребляя это название, мы можем сказать, что уравнение

A(x-X())+B(y~y0) + C(z-z0)=0

есть уравнение плоскости, проходящей через точку М 0 (х 0; у 0; z0) и имеющей нормальный вектор п - {А; В ; С}. Уравнение вида

Ах + Ву-\- Cz + D = 0

называется общим уравнением плоскости.

200. Теорема 25. В декартовых координатах каждое уравнение первой степени определяет плоскость.

Доказательство. Считая заданной какую-нибудь декартову прямоугольную систему координат, рассмотрим произвольное уравнение первой степени

Ax-\-By+Cz-\rD = 0. (2)

Когда, мы говорим «произвольное» уравнение, то подра­зумеваем при этом, что коэффициенты А, В, С, D могут быть какими угодно числами, но, конечно, исключая

случай одновременного равенства нулю всех трех коэффици­ентов А, В, С. Мы должны доказать, что уравнение (2) есть уравнение некоторой плоскости.

Пусть лг 0, у 0, г 0-какое-нибудь решение уравнения (2), т. е. тройка чисел, которая этому уравнению удовлетворяет*). Подставляя числа у 0, z0 вместо текущих координат в левую часть уравнения (2), мы получим арифметическое тождество

Ax0 + By0 + Cz0+D^O. (3)

Вычтем из уравнения (2) тождество (3). Мы получим урав­нение

A(x-xo)+B(y-yo) + C(z-zo) = 0, (1)

которое по предыдущему представляет собой уравнение плоскости, проходящей через точку М 0 (jc0; у 0; z0) и име­ющей нормальный вектор п - {А; В; С}. Но уравнение (2) равносильно уравнению (1), так как уравнение (1) получает­ся из уравнения (2) путем почленного вычитания тож­дества (3), а уравнение (2) в свою очередь получается из уравнения (1) путем почленного прибавления тождества (3). Следовательно, уравнение (2) является уравнением той же плоскости.

Мы доказали, что произвольное уравнение первой сте­пени определяет плоскость; тем самым теорема доказана.

201. Поверхности, кооторые в" декартовых координатах определяются уравнениями первой степени, называются, как мы знаем, поверхностями первого порядка. Употребляя эту терми­нологию, мы можем высказать установленные результаты так:

Каждая плоскость есть поверхность первого порядка; каждая поверхность первого порядка есть плоскость.

Пример. Составить уравнение плоскости, которая проходит через точку Afe(l; 1; 1) перпендикулярно к вектору я*={ 2; 2; 3}.

Реше н и е. Согласно п° 199 искомое уравнение есть

2(*- 1)+2 (у -1)+3(г -1)=0,

или

2х+2у+3г- 7 = 0.

*) Уравнение (2), как всякое уравнение первой степени с тремя неизвестными, имеет бесконечно много решений. Чтобы найти какое- нибудь из них, нужно двум неизвестным предписать численные зна­чения, а третью неизвестную тогда найти ив уравнения.

202. В заключение этого параграфа докажем следующее предложение: если два уравнения Ахх -j- В^у -]- Cxz Dt = 0 и А 2х + В^у -f- C2z -]- £)2 = 0 определяют одну и ту же плос­кость, то коэффициенты их пропорциональны.

В самом деле, в этом случае векторы пх = {Л 1; Вх\ и п 2 - {/42; В 2; Сг} перпендикулярны к одной плоскости, следовательно, коллинеарны друг другу. Но тогда согласно п° 154 числа Аъ В 2, С 2 пропорциональны числам А1г В1гСх; обозначив множитель пропорциональности через р, имеем: А 2-А 1ц, B2 = Bx\i, С 2 =.Cj\i. Пусть М 0 (х 0; у 0; ^-лю­бая точка плоскости; ее координаты должны удовлетворять каждому из данных уравнений, таким образом, Ахх 0 + Вху 0

Cxz0 = 0 и A2xQ В 2у 0 C2z0 + D2 = 0. Умножим первое из этих равенств на р. и вычтем из второго; полу­чим D2-Djp = 0. Следовательно, D%-Dx\i и

В^ Сг_ D2

Ах В, Сх-Б1 ^

Тем самым наше утверждение доказано.

1.7.1. Плоскость.

Рассмотрим в декартовом базисе произвольную плоскость Р и вектор нормали (перпендикулярный) к ней `n (А, В, С). Возьмем в этой плоскости произвольную фиксированную точку М0(х0, у0, z0) и текущую точку М(х, у, z).

Очевидно, что ?`n = 0 (1.53)

(см.(1.20) при j = p /2). Это уравнение плоскости в векторной форме. Переходя к координатам, получим общее уравнение плоскости

А(х – х0) + В(у – у0) + С(z – z0) = 0 ?Ах + Ву + Сz + D = 0 (1.54).

(D = –Ах0– Ву0 – Сz0; А2 + В2 + С2 ? 0).

Можно показать, что в декартовых координатах каждая плоскость определяется уравнением первой степени и, обратно, каждое уравнение первой степени определяет плоскость, (т.е. плоскость есть поверхность первого порядка и поверхность первого порядка есть плоскость).

Рассмотрим некоторые частные случаи расположения плоскости, заданной общим уравнением:

А = 0 – параллельна оси Ох; В = 0 – параллельна оси Оу; С = 0 – параллельна оси Оz. (Такие плоскости, перпендикулярные одной из координатных плоскостей, называют проектирующими); D = 0 – проходит через начало координат; А = В = 0 – перпендикулярна оси Оz (параллельна плоскости хОу); А = В = D = 0 – совпадает с плоскостью хОу (z = 0). Аналогично анализируются все остальные случаи.

Если D ? 0, то, разделив обе части (1.54) на -D, можно привести уравнение плоскости к виду: (1.55),

а = – D /А, b = –D/ В, с =–D /С. Соотношение (1.55) называетcя уравнением плоскости в отрезках; а, b, с – абсцисса, ордината и аппликата точек пересечения плоскости с осями Ох, Оу, Оz, а |a|, |b|, |c| – длины отрезков, отсекаемых плоскостью на соответствующих осях от начала координат.

Умножая обе части (1.54) на нормирующий множитель (mD xcosa + ycosb + zcosg – p = 0 (1.56)

где cosa = Аm, cosb = Вm, cosg = Сm – направляющие косинусы нормали к плоскости, р – расстояние до плоскости от начала координат.

Рассмотрим основные соотношения, используемые в расчетах. Угол между плоскостями А1х + В1у + С1z + D1 = 0 и А2х + В2у + С2z + D2 = 0 легко определить как угол между нормалями этих плоскостей `n1 (А1, В1, С1) и

`n2 (А2, В2, С2): (1.57)

Из (1.57) легко получить условие перпендикулярности

А1А2 + В1 В2 + С1 С2 = 0 (1.58)

и параллельности (1.59) плоскостей и их нормалей.

Расстояние от произвольной точки М0(х0, у0, z0) до плоскости (1.54)

определяется выражением: (1.60)

Уравнение плоскости, проходящей через три заданные точки М1(х1, у1, z1), М2(х2, у2, z2), М3(х3, у3, z3) удобнее всего записать используя условие компланарности (1.25) векторов где М(х, у, z) – текущая точка плоскости.

(1.61)

Приведем уравнение пучка плоскостей (т.е.

Множества плоскостей, проходящих через одну прямую) – его удобно использовать в ряде задач.

(А1х + В1у + С1z + D1) + l(А2х + В2у + С2z + D2) = 0 (1.62)

Где l Î R, а в скобках - уравнения двух любых плоскостей пучка.

Контрольные вопросы.

1) Как проверить, что данная точка лежит на поверхности, заданной данным уравнением?

2) Каков характерный признак, отличающий уравнение плоскости в декартовой системе координат от уравнения других поверхностей?

3) Как расположена плоскость относительно системы координат, если в её уравнении отсутствует: а) свободный член; б) одна из координат; в) две координаты; г) одна из координат и свободный член; д) две координаты и свободный член?

1) Даны точки М1(0,-1,3) и М2(1,3,5). Написать уравнение плоскости, проходящей через точку М1 и перпендикулярной к вектору Выбрать верный ответ:

а) ; б) .

2) Найти угол между плоскостями и . Выбрать верный ответ:

а) 135о, б) 45о

1.7.2. Прямая. Плоскости, нормали которых не коллинеарны, или пересекаются, однозначно определяя прямую как линию их пересечения, что и записывается следующим образом:

Через эту прямую можно провести бесконечно много плоскостей (пучок плоскостей (1.62)), в том числе и проектирующие ее на координатные плоскости. Чтобы получить их уравнения, достаточно преобразовать (1.63), исключив из каждого уравнения по одной неизвестной и приведя их, например, к виду (1.63`).

Поставим задачу – провести через точку М0(х0,у0,z0) прямую, параллельную вектору `S (l, m, n) (его называют направляющим). Возьмем на искомой прямой произвольную точку М(х,у,z). Векторы и должны быть коллинеарны, откуда получаем канонические уравнения прямой.

(1.64) или (1.64`)

где cosa, cosb, cosg – направляющие косинусы вектора `S. Из (1.64) легко получить уравнение прямой, проходящей через заданные точки М1(х1, у1, z1) и М2(х2, у2, z2) (она параллельна )

Или (1.64``)

(Значения дробей в (1.64) равны для каждой точки прямой и могут быть обозначены через t, где tR. Это позволяет ввести параметрические уравнения прямой

Каждому значению параметра t соответствует набор координат х, у, z точки на прямой или (иначе) - значения неизвестных, удовлетворяющих уравнениям прямой).

Используя уже известные свойства векторов и операций над ними и канонические уравнения прямой легко получить следующие формулы:

Угол между прямыми: (1.65)

Условие параллельности (1.66).

перпендикулярности l1l2 + m1m2 + n1n2 = 0 (1.67) прямых.

Угол между прямой и плоскостью (легко получить, найдя угол между прямой и нормалью к плоскости, составляющий в сумме с искомым p/2)

(1.68)

Из (1.66) получаем условие параллельности Al + Bm + Cn = 0 (1.69)

и перпендикулярности (1.70) прямой и плоскости. Необходимое и достаточное условие нахождения двух прямых в одной плоскости легко получить из условия компланарности (1.25).

(1.71)

контрольные вопросы.

1) Каковы способы задания прямой линии в пространстве?

1) Написать уравнения прямой, проходящей через точку А(4,3,0) и параллельной вектору Указать верный ответ:

а) ; б) .

2) Написать уравнения прямой, проходящей через точки А(2,-1,3) и В(2,3,3). Указать верный ответ.

а) ; б) .

3) Найти точку пересечения прямой с плоскостью: , . Указать верный ответ:

а) (6,4,5); б) (6,-4,5).

1.7.3. Поверхности второго порядка. Если линейное уравнение в трехмерном декартовом базисе однозначно определяет плоскость, любое нелинейное уравнение, содержащее х, у, z описывает какую – то иную поверхность. Если уравнение имеет вид

Ах2 + Ву2 + Cz2 + 2Dxy + 2Exz + 2Fyz + 2Gx + 2Hy + 2Kz + L = 0, то оно описывает поверхность второго порядка (общее уравнение поверхности второго порядка). Выбором или преобразованием декартовых координат уравнение можно максимально упростить, приведя к одной из следующих форм, описывающих соответствующую поверхность.

1. Канонические уравнения цилиндров второго порядка, образующие которых параллельны оси Oz, а направляющими служат соответствующие кривые второго порядка, лежащие в плоскости хОу:

(1.72), (1.73), у2 = 2рх (1.74)

эллиптический, гиперболический и параболический цилиндры соответственно.

(Напомним, что цилиндрической называют поверхность, полученную перемещением прямой, называемой образующей, параллельно самой себе. Линию пересечения этой поверхности с плоскостью, перпендикулярной образующей, называют направляющей – она определяет форму поверхности).

По аналогии можно записать уравнения таких же цилиндрических поверхностей с образующими, параллельными оси Оу и оси Oх. Направляющую можно задать, как линию пересечения поверхности цилиндра и соответствующей координатной плоскости, т.е. системой уравнений вида:

2. Уравнения конуса второго порядка с вершиной в начале координат:

(1.75)

(осями конуса служат оси Oz, Oy и Ох соответственно)

3. Каноническое уравнение эллипсоида: (1.76);

Частными случаями являются эллипсоиды вращения, например – поверхность, полученная вращением эллипса вокруг оси Оz (При

а > с эллипсоид сжат, при a х2 + у2+ z2 + = r2 – уравнение сферы радиуса r с центром в начале координат).

4. Каноническое уравнение однополостного гиперболоида

(знак “ – ” может стоять перед любым из трех слагаемых левой части – это изменяет только положение поверхности в пространстве). Частные случаи – однополостные гиперболоиды вращения, например – поверхность, полученная вращением гиперболы вокруг оси Oz (мнимой оси гиперболы).

5. Каноническое уравнение двухполостного гиперболоида

(знак “ – ” может стоять перед любым из трех слагаемых левой части).

Частные случаи – двухполостные гиперболоиды вращения, например – поверхность, полученная вращением гиперболы вокруг оси Оz (действительной оси гиперболы).

6. Каноническое уравнение эллиптического параболоида

(p >0, q >0) (1.79)

7. Каноническое уравнение гиперболического параболоида

(p >0, q >0) (1.80)

(переменная z может поменяться местами с любой из переменных х и у – изменится положение поверхности в пространстве).

Отметим, что представление об особенностях (форме) этих поверхностей легко получить, рассматривая сечения этих поверхностей плоскостями, перпендикулярными осям координат.

контрольные вопросы.

1) Какое множество точек в пространстве определяет уравнение ?

2) Каковы канонические уравнения цилиндров второго порядка; конуса второго порядка; эллипсоида; однополостного гиперболоида; двухполостного гиперболоида; эллиптического параболоида; гиперболического параболоида?

1) Найти центр и радиус сферы и указать верный ответ:

а) С(1,5;-2,5;2), ; б) С(1,5;2,5;2), ;

2) Определить вид поверхности, заданной уравнениями: . Указать верный ответ:

а) однополостный гиперболоид; гиперболический параболоид; эллиптический параболоид; конус.

б) двухполостный гиперболоид; гиперболический параболоид; эллиптический параболоид; конус.

§7. Плоскость как поверхность первого порядка. Общее уравнение плоскости. Уравнение плоскости, проходящей через данную точку перпендикулярно заданному вектору Введѐм в пространстве прямоугольную декартову систему координат Oxyz и рассмотрим уравнение первой степени (или линейное уравнение) относительно x, y, z: (7.1) Ax  By  Cz  D  0, A2  B2  C 2  0 . Теорема 7.1. Любая плоскость может быть задана в произвольной прямоугольной декартовой системе координат уравнением вида (7.1). Точно так же, как и в случае прямой на плоскости, справедлива теорема, обратная теореме 7.1. Теорема 7.2. Любое уравнение вида (7.1) задаѐт в пространстве плоскость. Доказательство теорем 7.1 и 7.2 можно провести аналогично доказательству теорем 2.1, 2.2. Из теорем 7.1 и 7.2 следует, что плоскость и только она является поверхностью первого порядка. Уравнение (7.1) называется общим уравнением пло-скости. Его  коэффициенты A, B, C трактуются геометрически как координаты вектора n , перпендикулярного плоскости, определяемой этим уравнением. Этот вектор  n(A, B, C) называется вектором нормали к данной плоскости. Уравнение (7.2) A(x  x0)  B(y  y0)  C (z  z0)  0 при всевозможных значениях коэффициентов A, B, C задаѐт все плоскости, про-ходящие через точку M 0 (x0 , y0 , z0) . Оно называется уравнением связки плоскостей. Выбор конкретных значений A, B, C в (7.2) означает выбор плоскости P из связки, проходящей через точку M 0 перпендикулярно  заданному вектору n(A, B, C) (рис.7.1). Пример 7.1. Написать уравнение плоскости Р, проходящей через точку   А(1, 2, 0) параллельно векторам a  (1, 2,–1), b  (2, 0, 1) .    Вектор нормали n к Р ортогонален данным векторам a и b (рис. 7.2),   поэтому за n можно взять их векторное n произведение: А    Р i j k    2 1  1 1   2 n  a  b  1 2  1  i  j 2 1  k 12 0  0 1 2 0 1 n   a    b 2i  3 j  4k . Подставим координаты Рис. 7.2. К примеру 7.1 P M0  точки M 0 и вектора n в уравнение (7.2), получим Рис. 7.1. К уравнению уравнение плоскости связки плоскостей P: 2(x  1)  3(y  2)  4z  0 или P: 2x  3y  4z  4  0 .◄ 1 Если два из коэффициентов A, B, C уравнения (7.1) равны нулю, оно задаѐт плоскость, параллельную одной из координатных плоскостей. Например, при A  B  0 , C  0 – плоскость P1: Cz  D  0 или P1: z   D / C (рис. 7.3). Она па-раллельна плоскости Oxy, ибо еѐ вектор  нормали n1(0, 0, C) перпендикулярен этой плоскости. При A  C  0 , B  0 или B  C  0 , A  0 уравнение (7.1) определяет плоскости P2: By  D  0 и P3: Ax  D  0 , параллельные координатным плоскостям Oxz и Oyz, так как   их векторы нормали n2(0, B, 0) и n3(A, 0, 0) им перпендикулярны (рис. 7.3). Если только один из коэффициентов A, B, C уравнения (7.1) равен нулю, то оно задаѐт плоскость, параллельную одной из координатных осей (или еѐ со-держащую, если D  0). Так, плоскость P: Ax  By  D  0 параллельна оси Oz, z z  n1  n  n2 P1 L P O  n3 x y O P2 y P3 x Рис. 7.4. Плоскость P: Ax  B y  D  0 , параллельная оси Oz Рис. 7.3. Плоскости параллельные плоскостям координат  поскольку еѐ вектор нормали n(A, B, 0) перпендикулярен оси Oz. Заметим, что она проходит через прямую L: Ax  By  D  0 , лежащую в плоскости Oxy (рис. 7.4). При D  0 уравнение (7.1) задаѐт плоскость, проходящую через начало координат. Пример 7.2. Найти значения параметра , при которых уравнение x  (2  2) y  (2    2)z    3  0 определяет плоскость P: а) параллельную одной из координатных плоскостей; б) параллельную одной из координатных осей; в) проходящую через начало координат. Запишем данное уравнение в виде x  (  2) y  (  2)(  1) z    3  0 . (7.3) При любом значении  уравнение (7.3) определяет некоторую плоскость, так как коэффициенты при x, y, z в (7.3) не обращаются в нуль одновременно. а) При   0 уравнение (7.3) определяет плоскость P , параллельную плоскости Oxy , P: z  3 / 2 , а при   2 оно определяет плоскость P , 2 параллельную плоскости Oyz , P: x  5/ 2 . Ни при каких значениях  плоскость P , определяемая уравнением (7.3), не параллельна плоскости Oxz , поскольку коэффициенты при x, z в (7.3) не обращаются в нуль одновременно. б) При   1 уравнение (7.3) определяет плоскость P , параллельную оси Oz , P: x  3y  2  0 . При остальных значениях параметра  оно не определяет плоскости, параллельной только одной из координатных осей. в) При   3 уравнение (7.3) определяет плоскость P , проходящую через начало координат, P: 3x  15 y  10 z  0 . ◄ Пример 7.3. Написать уравнение плоскости Р, проходящей через: а) точку M (1,  3, 2) параллельно плоскости ось Оху; б) ось Ох и точку M (2,  1, 3) .   а) За вектор нормали n к Р здесь можно взять вектор k (0, 0,1) – орт оси Oz, так как он перпендикулярен плоскости Оху. Подставим координаты точки  M (1,  3, 2) и вектора n в уравнение (7.2), получим уравнение плоскости P: z 3  0.   б) Вектор нормали n к Р ортогонален векторам i (1, 0, 0) и OM (2,  1, 3) ,  поэтому за n можно взять их векторное произведение:    i j k       n  i  OM  1 0 0   j 12 03  k 12 01   3 j  k . 2 1 3  Подставим координаты точки О и вектора n в уравнение (7.2), получим уравнение плоскости P:  3(y  0)  (z  0)  0 или P: 3 y  z  0 .◄ 3



Похожие статьи