Кванторы общности и существования. Значение формулы логики предикатов

Предика́т (лат. praedicatum - заявленное, упомянутое, сказанное) - любое математическое высказывание, в котором есть, по меньшей мере, одна переменная. Предикат является основным объектом изучения логики первого порядка.

Предикат – выражение с логическими переменными, имеющие смысл при любых допустимых значениях этих пременных.

Выражения: х > 5, x > y – предикаты.

Предика́т (n -местный, или n -арный) - это функция с множеством значений {0,1} (или «ложь» и «истина»), определённая на множестве . Таким образом, каждый набор элементов множества M характеризуется либо как «истинный», либо как «ложный».

Предикат можно связать с математическим отношением: если n -ка принадлежит отношению, то предикат будет возвращать на ней 1. В частности, одноместный предикат определяет отношение принадлежности некоторому множеству.

Предикат - один из элементов логики первого и высших порядков. Начиная с логики второго порядка, в формулах можно ставить кванторы по предикатам.

Предикат называют тождественно-истинным и пишут:

если на любом наборе аргументов он принимает значение 1.

Предикат называют тождественно-ложным и пишут:

если на любом наборе аргументов он принимает значение 0.

Предикат называют выполнимым , если хотя бы на одном наборе аргументов он принимает значение 1.

Так как предикаты принимают только два значения, то к ним применимы все операции булевой алгебры, например: отрицание, импликация, конъюнкция, дизъюнкция и т. д

Ква́нтор - общее название для логических операций, ограничивающих область истинности какого-либо предиката. Чаще всего упоминают:

Квантор всеобщности (обозначение: , читается: «для всех…», «для каждого…» или «каждый…», «любой…», «для любого…»).

Квантор существования (обозначение: , читается: «существует…» или «найдётся…»).

Примеры

Обозначим P (x ) предикат «x делится на 5». Используя квантор общности, можно формально записать следующие высказывания (конечно, ложные):

любое натуральное число кратно 5;

каждое натуральное число кратно 5;

все натуральные числа кратны 5;

следующим образом:

.

Следующие (уже истинные) высказывания используют квантор существования:

существуют натуральные числа, кратные 5;

найдётся натуральное число, кратное 5;

хотя бы одно натуральное число кратно 5.

Их формальная запись:

.Введение в понятие

Пусть на множестве Х простых чисел задан предикат Р(х): «Простое число х - нечётно». Подставим перед этим предикатом слово «любое». Получим ложное высказывание «любое простое число х нечётно» (это высказывание ложно, так как 2 - простое чётное число).

Подставив перед данным предикатом Р(х) слово «существует», получим истинное выказывание «Существует простое число х, являющееся нечётным» (например, х=3).

Таким образом, превратить предикат в высказывание можно, поставив перед предикатом слова: «все», «существует», и др., называемые в логике кванторами.

Кванторы в математической логике

Высказывание означает, что область значений переменной x включена в область истинности предиката P (x ).

(«При всех значениях (x) утверждение верно»).

Высказывание означает, что область истинности предиката P (x ) непуста.

(«Существует (x) при котором утверждение верно»).

Вопрос31 Граф и его элементы. Основные понятия. Инцидентность, кратность, петля, смежность. Типы графов. Маршрут в графе и его длина. Классификация маршрутов. Матрицы смежности ориентированного и неориентированного графов.

В математической теории графов и информатике граф - это совокупность непустого множества вершин и множества пар вершин.

Объекты представляются как вершины, или узлы графа, а связи - как дуги, или рёбра. Для разных областей применения виды графов могут различаться направленностью, ограничениями на количество связей и дополнительными данными о вершинах или рёбрах.

Путём (или цепью) в графе называют конечную последовательность вершин, в которой каждая вершина (кроме последней) соединена со следующей в последовательности вершин ребром.

Ориентированным путём в орграфе называют конечную последовательность вершин v i , для которой все пары (v i ,v i + 1) являются (ориентированными) рёбрами.

Циклом называют путь, в котором первая и последняя вершины совпадают. При этом длиной пути (или цикла) называют число составляющих его рёбер . Заметим, что если вершины u и v являются концами некоторого ребра, то согласно данному определению, последовательность (u ,v ,u ) является циклом. Чтобы избежать таких «вырожденных» случаев, вводят следующие понятия.

Путь (или цикл) называют простым, если ребра в нём не повторяются; элементарным, если он простой и вершины в нём не повторяются. Несложно видеть, что:

Всякий путь, соединяющий две вершины, содержит элементарный путь, соединяющий те же две вершины.

Всякий простой неэлементарный путь содержит элементарный цикл .

Всякий простой цикл, проходящий через некоторую вершину (или ребро), содержит элементарный (под-)цикл, проходящий через ту же вершину (или ребро).

Петля - элементарный цикл.

Граф или неориентированный граф G - это упорядоченная пара G : = (V ,E

V

E это множество пар (в случае неориентированного графа - неупорядоченных) вершин, называемых рёбрами.

V (а значит и E , иначе оно было бы мультимножеством) обычно считаются конечными множествами. Многие хорошие результаты, полученные для конечных графов, неверны (или каким-либо образом отличаются) для бесконечных графов . Это происходит потому, что ряд соображений становится ложным в случае бесконечных множеств.

Вершины и рёбра графа называются также элементами графа, число вершин в графе | V | - порядком, число рёбер | E | - размером графа.

Вершины u и v называются концевыми вершинами (или просто концами) ребра e = {u ,v }. Ребро, в свою очередь, соединяет эти вершины. Две концевые вершины одного и того же ребра называются соседними.

Два ребра называются смежными, если они имеют общую концевую вершину.

Два ребра называются кратными, если множества их концевых вершин совпадают.

Ребро называется петлёй, если его концы совпадают, то есть e = {v ,v }.

Степенью deg V вершины V называют количество инцидентных ей рёбер(при этом петли считают дважды).

Вершина называется изолированной, если она не является концом ни для одного ребра; висячей (или листом), если она является концом ровно одного ребра.

Ориентированный граф (сокращённо орграф) G - это упорядоченная пара G : = (V ,A ), для которой выполнены следующие условия:

V это непустое множество вершин или узлов,

A это множество (упорядоченных) пар различных вершин, называемых дугами или ориентированными рёбрами.

Дуга - это упорядоченная пара вершин (v, w) , где вершину v называют началом, а w - концом дуги. Можно сказать, что дуга ведёт от вершины v к вершине w .

Смешанный граф

Смешанный граф G - это граф, в котором некоторые рёбра могут быть ориентированными, а некоторые - неориентированными. Записывается упорядоченной тройкой G : = (V ,E ,A ), где V , E и A определены так же, как выше.

Ориентированный и неориентированный графы являются частными случаями смешанного.

Изоморфные графы(?)

Граф G называется изоморфным графу H , если существует биекция f из множества вершин графа G в множество вершин графа H , обладающая следующим свойством: если в графе G есть ребро из вершины A в вершину B , то в графе H f (A ) в вершину f (B ) и наоборот - если в графе H есть ребро из вершины A в вершину B , то в графе G должно быть ребро из вершины f − 1 (A ) в вершину f − 1 (B ). В случае ориентированного графа эта биекция также должна сохранять ориентацию ребра. В случае взвешенного графа биекция также должна сохранять вес ребра.

Матрица смежности графа G с конечным числом вершин n (пронумерованных числами от 1 до n ) - это квадратная матрица A размера n , в которой значение элемента a ij равно числу рёбер из i -й вершины графа в j -ю вершину.

Иногда, особенно в случае неориентированного графа, петля (ребро из i -й вершины в саму себя) считается за два ребра, то есть значение диагонального элемента a ii в этом случае равно удвоенному числу петель вокруг i -й вершины.

Матрица смежности простого графа (не содержащего петель и кратных ребер) является бинарной матрицей и содержит нули на главной диагонали.

Вопрос32 Функция. Способы задания. Классификация функций. Основные элементарные функции и их графики. Композиция функций. Элементарные функции.

Функция - математическое понятие, отражающее связь между элементами множеств. Можно сказать, что функция это «закон», по которому каждому элементу одного множества (называемому областью определения ) ставится в соответствие некоторый элемент другого множества (называемого областью значений ).

Математическое понятие функции выражает интуитивное представление о том, как одна величина полностью определяет значение другой величины. Так значение переменной x однозначно определяет значение выражения x 2 , а значение месяца однозначно определяет значение следующего за ним месяца, также любому человеку можно сопоставить другого человека - его отца. Аналогично, некоторый задуманный заранее алгоритм по варьируемым входным данным выдаёт определённые выходные данные.

Способы задания функции

Аналитический способ

Функция математический объект представляет собой бинарное отношение, удовлетворяющее определенным условиям. Функцию можно задать непосредственно как множество упорядоченных пар, например: есть функция . Однако, этот способ совершенно непригоден для функций на бесконечных множествах (каковыми являются привычные вещественные функции: степенная, линейная, показательная, логарифмическая и т. п.).

Для задания функции пользуются выражением: . При этом, x есть переменная, пробегающая область определения функции, а y - область значений. Эта запись говорит о наличии функциональной зависимости между элементами множеств. х и y могут пробегать любые множества объектов любой природы. Это могут быть числа, векторы, матрицы, яблоки, цвета радуги. Поясним на примере:

Пусть имеется множество яблоко, самолет, груша, стул и множество человек, паровоз, квадрат . Зададим функцию f следующим образом: (яблоко,человек), (самолет,паровоз), (груша,квадрат), (стул,человек) . Если ввести переменную x, пробегающую множество и переменную y, пробегающую множество , указанную функцию можно задать аналитически, как: .

Аналогично можно задавать числовые функции. Например: где х пробегает множество вещественных чисел задает некоторую функцию f. Важно понимать, что само выражение не является функцией. Функция как объект представляет собой множество (упорядоченных пар). А данное выражение как объект есть равенство двух переменных. Оно задает функцию, но не является ею.

Однако, во многих разделах математики, можно обозначать через f(x) как саму функцию, так и аналитическое выражение, ее задающее. Это синтаксическое соглашение является крайне удобным и оправданным.

Графический способ

Числовые функции можно также задавать с помощью графика. Пусть - вещественная функция n переменных.

Рассмотрим некоторое (n+1)-мерное линейное пространство над полем вещественных чисел (так как функция вещественная). Выберем в этом пространстве любой базис (). Каждой точке функции сопоставим вектор: . Таким образом, мы будем иметь множество векторов линейного пространства, соответствующих точкам данной функции по указанному правилу. Точки соответствующего аффинного пространства будут образовывать некоторую поверхность.

Если в качестве линейного пространства взять евклидово пространство свободных геометрических векторов (направленных отрезков), а число аргументов функции f не превосходит 2, указанное множество точек можно изобразить наглядно в виде чертежа (графика). Если сверх того исходный базис взять ортонормированным, получим "школьное" определение графика функции.

Для функций 3 аргументов и более такое представление не применимо ввиду отсутствия у человека геометрической интуиции многомерных пространств.

Однако, и для таких функций можно придумать наглядное полугеометрическое представление (например каждому значению четвертой координаты точки сопоставить некоторый цвет на графике)

Пропорциональные величины. Если переменные y и x прямо пропорциональны

y = k x ,

где k - постоянная величина ( коэффициент пропорциональности ).

График прямой пропорциональности – прямая линия, проходящая через начало координат и образующая с осью X угол , тангенс которого равен k : tan = k (рис.8). Поэтому, коэффициент пропорциональности называется также угловым коэффициентом . На рис.8 показаны три графика для k = 1/3, k = 1 и k = 3 .

Линейная функция. Если переменные y и x связаны уравнением 1-ой степени:

A x + B y = C ,

где по крайней мере одно из чисел A или B не равно нулю, то графиком этой функциональной зависимости является прямая линия . Если C = 0, то она проходит через начало координат, в противном случае - нет. Графики линейных функций для различных комбинаций A , B , C показаны на рис.9.

Обратная пропорциональность. Если переменные y и x обратно пропорциональны , то функциональная зависимость между ними выражается уравнением:

y = k / x ,

где k - постоянная величина.

График обратной пропорциональности – гипербола (рис.10). У этой кривой две ветви. Гиперболы получаются при пересечении кругового конуса плоскостью (о конических сечениях см. раздел «Конус» в главе «Стереометрия»). Как показано на рис.10, произведение координат точек гиперболы есть величина постоянная, в нашем примере равная 1. В общем случае эта величина равна k , что следует из уравнения гиперболы: xy = k .

Основные характеристики и свойства гиперболы:

x 0, область значений: y 0 ;

Функция монотонная (убывающая) при x < 0и при x > 0, но не

монотонная в целом из-за точки разрыва x = 0);

Функция неограниченная, разрывная в точке x = 0, нечётная, непериодическая;

- нулей функция не имеет.

Квадратичная функция. Это функция: y = ax 2 + bx + c , где a, b, c - постоянные, a b = c = 0 и y = ax 2 . График этой функции квадратная парабола - OY , которая называется осью параболы .Точка O вершиной параболы .

Квадратичная функция. Это функция: y = ax 2 + bx + c , где a, b, c - постоянные, a 0. В простейшем случае имеем: b = c = 0 и y = ax 2 . График этой функции квадратная парабола - кривая, проходящая через начало координат (рис.11). Каждая парабола имеет ось симметрии OY , которая называется осью параболы .Точка O пересечения параболы с её осью называется вершиной параболы .

График функции y = ax 2 + bx + c - тоже квадратная парабола того же вида, что и y = ax 2 , но её вершина лежит не в начале координат, а в точке с координатами:

Форма и расположение квадратной параболы в системе координат полностью зависит от двух параметров: коэффициента a при x 2 и дискриминанта D : D = b 2 4ac . Эти свойства следуют из анализа корней квадратного уравнения (см. соответствующий раздел в главе «Алгебра»). Все возможные различные случаи для квадратной параболы показаны на рис.12.

Основные характеристики и свойства квадратной параболы:

Область определения функции:  < x + (т.e. x R ), а область

значений:(ответьте, пожалуйста, на этот вопрос сами!);

Функция в целом не монотонна, но справа или слева от вершины

ведёт себя, как монотонная;

Функция неограниченная, всюду непрерывная, чётная при b = c = 0,

и непериодическая;

- при D < 0 не имеет нулей.

Показательная функция. Функция y = a x , где a - положительное постоянное число, называется показательной функцией .Аргумент x принимает любые действительные значения ; в качестве значений функции рассматриваются только положительные числа , так как иначе мы имеем многозначную функцию. Так, функция y = 81 x имеет при x = 1/4 четыре различных значения: y = 3, y = 3, y = 3 i и y = 3 i (проверьте, пожалуйста!). Но мы рассматриваем в качестве значения функции только y = 3. Графики показательной функции для a = 2 и a = 1/2 представлены на рис.17. Они проходят через точку (0, 1). При a = 1 мы имеем график прямой линии, параллельной оси Х , т.e. функция превращается в постоянную величину, равную 1. При a > 1 показательная функция возрастает, a при 0 < a < 1 – убывает. Основные характеристики и свойства показательной функции:

Область определения функции:  < x + (т.e. x R );

область значений: y > 0 ;

Функция монотонна: возрастает при a > 1 и убывает при 0 < a < 1;

- нулей функция не имеет.

Логарифмическая функция. Функция y = log a x , где a – постоянное положительное число,не равное 1, называется логарифмической . Эта функция является обратной к показательной функции; её график (рис.18) может быть получен поворотом графика показательной функции вокруг биссектрисы 1-го координатного угла.

Основные характеристики и свойства логарифмической функции:

Область определения функции: x > 0,а область значений:  < y +

(т.e. y R );

Это монотонная функция: она возрастает при a > 1 и убывает при 0 < a < 1;

Функция неограниченная, всюду непрерывная, непериодическая;

У функции есть один ноль: x = 1.

Тригонометрические функции. При построении тригонометрических функций мы используем радианную меру измерения углов.Тогда функция y = sin x представляется графиком (рис.19). Эта кривая называется синусоидой .

График функции y = cos x представлен на рис.20; это также синусоида, полученная в результате перемещения графика y = sin x вдоль оси Х влево на 2

Из этих графиков очевидны характеристики и свойства этих функций:

Область определения:  < x + область значений: 1 y +1;

Эти функции периодические: их период 2 ;

Функции ограниченные (| y | , всюду непрерывные, не монотонные, но

имеющие так называемые интервалы монотонности , внутри которых они

ведут себя, как монотонные функции (см. графики рис.19 и рис.20);

Функции имеют бесчисленное множество нулей (подробнее см. раздел

«Тригонометрические уравнения»).

Графики функций y = tan x и y = cot x показаны соответственно на рис.21 и рис.22

Из графиков видно, что эти функции: периодические (их период ,

неограниченные, в целом не монотонные, но имеют интервалы монотонности

(какие?), разрывные (какие точки разрыва имеют эти функции?). Область

определения и область значений этих функций:

Функции y = Arcsin x (рис.23) и y = Arccos x (рис.24)многозначные, неограниченные; их область определения и область значений соответственно: 1 x +1 и  < y + . Поскольку эти функции многозначные, не

рассматриваемые в элементарной математике, в качестве обратных тригонометрических функций рассматриваются их главные значения: y = arcsin x и y = arccos x ; их графики выделены на рис.23 и рис.24 жирными линиями.

Функции y = arcsin x и y = arccos x обладают следующими характеристиками и свойствами:

У обеих функций одна и та же область определения: 1 x +1 ;

их области значений:  /2 y /2 для y = arcsin x и 0 y для y = arccos x ;

(y = arcsin x – возрастающая функция; y = arccos x – убывающая);

Каждая функция имеет по одному нулю (x = 0 у функции y = arcsin x и

x = 1 у функции y = arccos x ).

Функции y = Arctan x (рис.25) и y = Arccot x (рис.26)- многозначные, неограниченные функции; их область определения:  x + . Их главные значения y = arctan x и y = arccot x рассматриваются в качестве обратных тригонометрических функций; их графики выделены на рис.25 и рис.26 жирными ветвями.

Функции y = arctan x и y = arccot x имеют следующие характеристики и свойства:

У обеих функций одна и та же область определения:  x + ;

их области значений:  /2< y < /2 для y = arctan x и 0 < y < для y = arccos x ;

Функции ограниченные, непериодические, непрерывные и монотонные

(y = arctan x – возрастающая функция; y = arccot x – убывающая);

Только функция y = arctan x имеет единственный ноль (x = 0);

функция y = arccot x нулей не имеет.

Композиция функций

Если даны два отображения и , где , то имеет смысл "сквозное отображение" из в , заданное формулой , , которое называется композицией функций и и обозначается .

Рис.1.30.Сквозное отображение из в

Логика и аргументация: Учебн. пособие для вузов. Рузавин Георгий Иванович

4.2. Кванторы

4.2. Кванторы

Существенное отличие логики предикатов от логики высказываний заключается также в том, что первая вводит количественную характеристику высказываний или, как говорят в логике, квантифицирует их. Уже в традиционной логике суждения классифицировались не только по качеству, но и по количеству, т.е. общие суждения отличались от частных и единичных. Но никакой теории о связи между ними не было. Современная логика рассматривает количественные характеристики высказываний в специальной теории квантификации, которая составляет неотъемлемую часть исчисления предикатов.

Для квантификации (количественной характеристики) высказываний эта теория вводит два основных квантора: квантор общности, который мы будем обозначать символом (х), и квантор существования, обозначаемый символом (Ех). Они ставятся непосредственно перед высказываниями или формулами, к которым относятся. В том случае, когда кванторы имеют более широкую область действия, перед соответствующей формулой ставятся скобки.

Квантор общности показывает, что предикат, обозначенный определенным символом, принадлежит всем объектам данного класса или универсума рассуждения.

Так, суждение: "Все материальные тела обладают массой" можно перевести на символический язык так:

где х - обозначает материальное тело:

М - массу;

(х) - квантор общности.

Аналогично этому утверждение о существовании экстрасенсорных явлений можно выразить через квантор существования:

где через х обозначены явления:

Э - присущее таким явлениям свойство экстрасенсорности;

(Ex) - квантор существования.

С помощью квантора общности можно выражать эмпирические и теоретические законы, обобщения о связи между явлениями, универсальные гипотезы и другие общие высказывания. Например, закон теплового расширения тел символически можно представить в виде формулы:

(х) (Т(х) ? P(х)),

где (х) - квантор общности;

Т(х) - температура тела;

Р(х) - его расширение;

Знак импликации.

Квантор существования относится только к определенной части объектов из данного универсума рассуждений. Поэтому, например, он используется для символической записи статистических законов, которые утверждают, что свойство или отношение относится только для характеристики определенной части изучаемых объектов.

Введение кванторов дает возможность прежде всего превращать предикаты в определенные высказывания. Предикаты сами по себе не являются ни истинными, ни ложными. Они становятся таковыми, если вместо переменных либо подставляются конкретные высказывания, либо, если они связываются кванторами, квантифицируются. На этом основании вводится разделение переменных на связанные и свободные.

Связанными называются переменные, подпадающие под действие знаков кванторов общности или существования. Например, формулы (х) А (х) и (х) (Р (х) ? Q(x)) содержат переменную х. В первой формуле квантор общности стоит непосредственно перед предикатом А(х), вовторой - квантор распространяет свое действие на переменные, входящие в предыдущий и последующий члены импликации. Аналогично этому квантор существования может относиться как к отдельному предикату, так и к их комбинации, образованной с помощью логических операций отрицания, конъюнкции, дизъюнкции и др.

Свободная переменная не подпадает под действие знаков кванторов, поэтому она характеризует предикат или пропозициональную функцию, а не высказывание.

С помощью комбинации кванторов можно выразить на символическом языке логики достаточно сложные предложения естественного языка. При этом высказывания, где речь идет о существовании объектов, удовлетворяющих определенному условию, вводятся с помощью квантора существования. Например, утверждение о существовании радиоактивных элементов записывается с помощью формулы:

где R обозначает свойство радиоактивности.

Утверждение, что существует опасность для курящего заболеть раком, можно выразить так: (Ех) (К(х) ? P(x)), где К обозначает свойство "быть курящим", а Р - "заболеть раком". С известными оговорками то же самое можно было выразить» посредством квантора общности: (х) (К(х) ? Р(х)). Но утверждение, что всякий курящий может заболеть раком, было бы некорректным, и поэтому его лучше всего записать с помощью квантора существования, а не общности.

Квантор общности используется для высказываний, в которых утверждается, что определенному предикату А удовлетворяет любой объект из области его значений. В науке, как уже говорилось, квантор общности используется для выражения утверждений универсального характера, которые словесно представляются с помощью таких фраз, как "для всякого", "каждый", "всякий", "любой" и т.п. Путем отрицания квантора общности можно выразить общеотрицательные высказывания, которые в естественном языке вводятся словами "никакой", "ни один", "никто" и т.п.

Разумеется, при переводе на символический язык утверждений естественного языка встречаются определенные трудности, но при этом достигается необходимая точность и однозначность выражения мысли. Нельзя, однако, думать, что формальный язык богаче естественного языка, на котором выражаются не просто смысл, но и разные его оттенки. Речь поэтому может идти только о более точном представлении выражений естественного языка как универсального средства выражения мыслей и обмена ими в процессе общения.

Чаще всего кванторы общности и существования встречаются вместе. Например, чтобы выразить символически утверждение: "Для каждого действительного числа х существует такое число у, что х будет меньше у", обозначим предикат "быть меньше" символом <, известным из математики, и тогда утверждение можно представить формулой: (х) (Еу) < (х, у). Или в более привычной форме: (х) (Еу) (х < у). Это утверждение является истинным высказыванием, поскольку для любого действительного числа х всегда существует другое действительное число, которое будет больше него. Но если мы переставим в нем кванторы, т.е. запишем его в форме: (Еу) (х) (х < у), тогда высказывание станет ложным, ибо в переводе на обычный язык оно означает, что существует число у, которое будет больше любого действительного числа, т.е. существует наибольшее действительное число.

Из самого определения кванторов общности и существования непосредственно следует, что между ними существует определенная связь, которую обычно выражают с помощью следующих законов.

1. Законы перестановки кванторов:

(х) (у) А ~ (у) (х) А;

(Ех) (Еу) А ~ (Еу) (Ех) А;

(Ех) (у) А ~ (у) (Ех) А;

2. Законы отрицания кванторов:

¬ (х) А ~ (Ех) ¬ А;

¬ (Ех) А ~ (х) ¬ А;

3. Законы взаимовыразимости кванторов:

(х) А ~ ¬ (Ех) ¬ А;

(Ех) А ~ ¬ (х) ¬ А.

Здесь всюду А обозначает любую формулу объектного (предметного) языка. Смысл отрицания кванторов очевиден: если неверно, что для любого х имеет место А, тогда существуют такие х, для которых А не имеет места. Отсюда также следует, что если: любому х присуще А, тогда не существует такого х, которому было бы присуще не-А, что символически представлено в первом законе взаимовыразимости.

В логике предикатов рассматриваются две операции, которыё превращают одноместный предикат в высказывание, для этого используются специальные слова, которые ставят перед предикатами. В логике их называют кванторами.

Различают два вида кванторов:

1. Квантор общности;

2. Квантор существования.

1. Квантор общности.

Пусть имеется предикат Р(х) определенный на множестве М

Символ называют квантором всеобщности (общности). Это перевернутая первая буква английского слова All- все. Читают «все», «каждый», «любой», «всякий». Переменную х в предикате Р(х) называют свободной (ей можно придавать различные значения из М), в высказывании же х называют связанной квантором всеобщности.

Пример №1: Р(х) – «Простое число х нечетно»

Добавим квантор общности – «Всякое простое число х нечетно» - ложное высказывание.

Под выражением понимают высказывание истинное, когда Р(х) истинно для каждого элемента х из множества М и ложное в противном случае. Это высказывание уже не зависит от х.

2. Квантор существования.

Пусть P(x) -предикат определенный на множестве М. Под выражением понимают высказывание , которое является истинным, если существует элемент , для которого P(x) истинно, и ложным – в противном случае. Это высказывание уже не зависит от x. Соответствующее ему словесное выражение звучит так: “Существует x, при котором P(x) истинно.” Символ называют квантором существования. В высказывании переменная x связана этим квантором (на нее навешен квантор).

(Читают: «Существует такое х из М, при котором Р от х истинно»)

Под выражением понимают высказывание, которое является истинным, если существует элемент х€М (хотя бы один), для которого Р(х) истинно, и ложным в противном случае.

Пример №2: Р(х) «Число х кратно 5»

Любое натуральное число кратно 5»

Каждое натуральное число кратно 5» ложные высказывания

Все натуральные числа кратны 5»

Существует натуральное число кратно 5

Найдется натуральное число кратно 5 истинные высказывания

Хотя бы одно натуральное число кратно 5

Кванторные операции применяются и к многоместным предикатам. Пусть, например, на множестве М задан двухместный предикат P(x,y). Применение кванторной операции к предикату P(x,y) по переменной x ставит в соответствие двухместному предикату P(x,y) одноместный предикат (или одноместный предикат ), зависящий от переменной y и не зависящий от переменной x. К ним можно применить кванторные операции по переменной y, которые приведут уже к высказываниям следующих видов:

Для построения отрицаний с кванторами надо:

1) квантор общности заменить на квантор существования, а квантор существования – на квантор общности;

2) предикат заменить его отрицанием.

Таким образом, справедливы формулы:

Отрицание предложения записывать как , а отрицание предложения – как . Очевидно, что предложение имеет тот же смысл, а следовательно, то же значение истинности, что и предложение , а предложение – тот же смысл, что . Иначе говоря, равносильно ; равносильно .

П р и м е р №3. Построить отрицание высказывания «некоторые двузначные числа делятся на 12».

Р е ш е н и е. Заменим квантор существования (он выражен словом «некоторые») на квантор общности «все» и построим отрицание предложения, стоящего после слова «некоторые», поставив частицу «не» перед глаголом. Получим высказывание «Все двузначные числа не делятся на 12».

П р и м е р №4. Сформулировать отрицание высказывания «В каждом классе хотя бы один ученик не справился с контрольной работой».

Р е ш е н и е. Данное высказывание содержит квантор общности, выраженный при помощи слова «каждый», и квантор существования, выраженный при помощи слов «хотя бы один». По правилу построения отрицаний высказываний с кванторами надо квантор общности заменить на квантор существования, а квантор существования – на квантор общности и убрать у глагола частицу «не». Получим: «Найдется такой класс, в котором все ученики справились с контрольной работой».

В любом национальном языке употребляемые в обычной речи связки “и”, “или”, “если …, то …”, “тогда и только тогда, когда …” и т.п. позволяют из уже заданных высказываний строить новые сложные высказывания. Истинность или ложность получаемых таким образом высказываний зависит от истинности и ложности исходных высказываний и соответствующей трактовки связок как операций над высказываниями . Логическая операция полностью может быть описана таблицей истинности , указывающей, какие значения принимает сложное высказывание при всех возможных значениях простых высказываний.

Логической операцией называется способ построения сложного высказывания из элементарных высказываний, при котором истинностное значение сложного высказывания полностью определяется истинностными значениями исходных высказываний (см. статью “”).

В алгебре логики логические операции и соответствующие им логические связки имеют специальные названия и обозначаются следующим образом:

Конъюнкция - логическая операция, ставящая в соответствие каждым двум элементарным высказываниям новое высказывание, являющееся истинным тогда и только тогда, когда оба исходных высказывания истинны 7 . Логическая операция конъюнкция

Рассмотрим два высказывания: p = “Завтра будет мороз ” и q = “Завтра будет идти снег ”. Очевидно, новое высказывание p & q = “Завтра будет мороз, и завтра будет идти снег ” истинно только в том случае, когда одновременно истинны высказывания p и q , а именно, что завтра будет и мороз и снег. Высказывание p & q будет ложно во всех остальных случаях: будет идти снег, но будет оттепель (т.е. не будет мороза); мороз будет, а снег не будет идти; не будет мороза, и снег не будет идти.

Дизъюнкция - логическая операция, ставящая в соответствие каждым двум элементарным высказываниям новое высказывание, являющееся ложным тогда и только тогда, когда оба исходных высказывания ложны, и истинным, когда хотя бы одно из двух образующих его высказываний истинно 8 . Логическая операция дизъюнкция определяется следующей таблицей истинности:

Рассмотрим два высказывания: p = “Колумб был в Индии ” и q = “Колумб был в Египте p q = “Колумб был в Индии или был в Египте ” истинно как в случае, если Колумб был в Индии, но не был в Египте, так и в случае, если он не был в Индии, но был в Египте, а также в случае, если он был и в Индии, и в Египте. Но это высказывание будет ложно, если Колумб не был ни в Индии, ни в Египте.

Союз “или” может применяться в речи и в другом, “исключающем” смысле. Тогда он соответствует другому высказыванию - разделительной, или строгой, дизъюнкции.

Строгая , или разделительная , дизъюнкция - логическая операция, ставящая в соответствие двум элементарным высказываниям новое высказывание, являющееся истинным только тогда, когда только одно из высказываний является истинным. Логическая операция разделительная дизъюнкция определяется следующей таблицей истинности:

Рассмотрим два высказывания: p = “Кошка охотится за мышами ” и q = “Кошка спит на диване ”. Очевидно, что новое высказывание p q истинно только в двух случаях - когда кошка охотится за мышами либо когда кошка мирно спит. Это высказывание будет ложно, если кошка не делает ни того, ни другого, т.е. когда оба события не происходят. Но это высказывание будет ложным и тогда, когда предполагается, что оба высказывания произойдут одновременно. В силу того, что этого произойти не может, высказывание и является ложным.

В логике связкам “либо” и “или” придается разное значение, однако в русском языке связку “или” иногда употребляют вместо связки “либо”. В этих случаях однозначность определения используемой логической операции связана с анализом содержания высказывания. Например, анализ высказывания “Петя сидит на трибуне А либо на трибуне Б ” заменить на “Петя сидит на трибуне А или Б ”, то анализ последнего высказывания однозначно укажет на логическую операцию разделительная дизъюнкция , т.к. человек не может находиться в двух разных местах одновременно.

Импликация - логическая операция, ставящая в соответствие каждым двум элементарным высказываниям новое высказывание, являющееся ложным тогда и только тогда, когда условие (посылка) - истинно, а следствие (заключение) - ложно. Подавляющее число зависимостей между событиями можно описать с помощью импликации. Например, высказыванием “Если на каникулах мы поедем в Петербург, то посетим Исаакиевский собор” мы утверждаем, что в случае приезда на каникулах в Петербург Исаакиевский собор мы посетим обязательно.

Логическая операция импликация

Импликация будет ложной только тогда, когда посылка истинна, а заключение ложно, и она заведомо будет истинна, если ее условие p ложно. Причем для математика это вполне естественно. В самом деле, исходя из ложной посылки, можно путем верных рассуждений получить как истинное, так и ложное утверждение.

Допустим, 1 = 2, тогда и 2 = 1. Складывая эти равенства, мы получим 3 = 3, т.е. из ложной посылки путем тождественных преобразований мы получили истинное высказывание.

Импликация, образованная из высказываний А и В , может быть записана при помощи следующих предложений: “Если А , то В ”, “Из А следует В ”, “А влечет В ”, “Для того чтобы А , необходимо, чтобы В ”, “Для того чтобы В , достаточно, чтобы А ”.

Эквивалентность - логическая операция, ставящая в соответствие двум элементарным высказываниям новое, являющееся истинным тогда и только тогда, когда оба исходных высказывания одновременно истинны или одновременно ложны. Логическая операция эквивалентность задается следующей таблицей истинности:

Рассмотрим возможные значения сложного высказывания, являющегося эквивалентностью: “Учитель поставит ученику 5 в четверти тогда и только тогда, когда ученик получит 5 на зачете” .

1) Ученик получил 5 на зачете и 5 в четверти, т.е. учитель выполнил свое обещание, следовательно, высказывание является истинным.

2) Ученик не получил на зачете 5, и учитель не поставил ему 5 в четверти, т.е. учитель свое обещание сдержал, высказывание является истинным.

3) Ученик не получил на зачете 5, но учитель поставил ему 5 в четверти, т.е. учитель свое обещание не сдержал, высказывание является ложным.

4) Ученик получил на зачете 5, но учитель не поставил ему 5 в четверти, т.е. учитель свое обещание не сдержал, высказывание является ложным.

Отметим, что в математических теоремах эквивалентность выражается связкой “необходимо и достаточно”.

Рассмотренные выше операции были двухместными (бинарными), т.е. выполнялись над двумя операндами (высказываниями). В алгебре логики определена и широко применяется и одноместная (унарная) операция отрицание .

Отрицание - логическая операция, которая каждому элементарному высказыванию ставит в соответствие новое высказывание, значение которого противоположно исходному. Логическая операция отрицание задается следующей таблицей истинности:

В русском языке для построения отрицания используется связка “неверно, что …”. Хотя связка “неверно, что …” и не связывает двух каких-либо высказываний в одно, она трактуется логиками как логическая операция, поскольку, поставленная перед произвольным высказыванием, образует из него новое.

Отрицанием высказывания “У меня дома есть компьютер” будет высказывание “Неверно, что у меня дома есть компьютер” или, что в русском языке то же самое, “У меня дома нет компьютера” . Отрицанием высказывания “Я не знаю китайского языка” будет высказывание “Неверно, что я не знаю китайского языка” или, что в русском языке одно и то же, “Я знаю китайский язык” .

Кванторы

В математической логике наряду с логическими операциями используются и кванторы. Квантор (от лат. quantum - сколько) - логическая операция, дающая количественную характеристику области предметов, к которой относится выражение, получаемое в результате ее применения.

В обычном языке носителями таких характеристик служат слова типа все , каждый , некоторый , любой , всякий , бесконечно много , существует , имеется , единственный , несколько , конечное число , а также все количественные числительные. В формализованных языках, составной частью которых является исчисление предикатов, для выражения всех подобных характеристик оказывается достаточным кванторов двух видов: квантора общности и квантора существования .

Кванторы позволяют из конкретной высказывательной формы (см. “Высказывания. Логические значения ”) получить высказывательную форму с меньшим числом параметров, в частности, из одноместной высказывательной формы получить высказывание 9 .

Квантор общности позволяет из данной высказывательной формы с единственной свободной переменной x получить высказывание с помощью связки “Для всех x …”. Результат применения квантора общности к высказывательной форме A(x ) обозначают x A(x ). Высказывание x A(x ) будет истинным тогда и только тогда, когда при подстановке в A(x ) вместо свободной переменной x любого объекта из области возможных значений всегда получается истинное высказывание. Высказывание x A(x ) может читаться следующим образом: “Для любого x имеет место A(x )”, “A(x ) при произвольном x ”, “Для всех x верно A(x )”, “Каждый x обладает свойством A(x )” и т.п.

Квантор существования позволяет из данной высказывательной формы с единственной свободной переменной x получить высказывание с помощью связки “Существует такой x , что …”. Результат применения квантора общности к высказывательной форме A(x ) обозначают x A(x ). Высказывание
x A(x ) истинно тогда и только тогда, когда в области возможных значений переменной x найдется такой объект, что при подстановке его имени вместо вхождения свободной переменной x в A(x ) получается истинной высказывание. Высказывание x A(x ) может читаться следующим образом: “Для некоторого x имеет место A(x )”, “Для подходящего x верно A(x )”, “Существует x , для которого A(x )”, “Хотя бы для одного x верно A(x )” и т.п.

Кванторы играют для формализованных языков математической логики ту же роль, которую играют для естественного языка так называемые “количественные” (“кванторные”) слова, - определяют область применимости данного высказывания (или высказывательной формы).

При построении отрицания к высказыванию, содержащему квантор, действует следующее правило: частица “не” добавляется к сказуемому, квантор общности заменяется на квантор единственности и наоборот. Рассмотрим пример. Отрицанием высказывания “Все юноши 11-х классов - отличники” является высказывание “Неверно, что все юноши 11-х классов - отличники” или “Некоторые юноши 11-х классов - не отличники”.

В информатике кванторы применяются в логических языках программирования (см. “Языки программирования ”) и языках запросов к базам данных.

Умение строить сложные высказывания требуется при работе с базами данных, при конструировании запроса поиска в Интернете, при построении алгоритмов и написании программ на любом алгоритмическом языке. Более того, это умение можно отнести к общешкольным умениям, т.к. оно связано с построением сложных умозаключений (рассуждений, получений выводов). В основе этого умения лежат знание основных логических операций и умение определять истинность сложных высказываний.

С логическими операциями дизъюнкция, конъюнкция и отрицание школьники знакомятся в основной школе. Там же вводится и понятие таблицы истинности. Скорее всего знакомство с данными понятиями возникает в языках программирования, но использовать их можно и в электронных таблицах - там логические операции реализованы через соответствующие функции OR, AND, NOT.

Более сложные логические операции могут быть рассмотрены в старшей школе. Задачи, использующие импликацию, встречаются в каждом из опубликованных вариантов ЕГЭ по информатике. Например: для какого числа X истинно высказывание ((X > 3) (X < 3)) –> (X < 1)? (Демоверсия ЕГЭ, 2007 г. )

При изучении операции импликации следует обратить внимание учащихся на тот факт, что большинство математических теорем являются импликациями. Однако те импликации, в которых посылки (условия) и заключения (следствиями) являются предложениями без взаимной (по существу) связи, не могут играть в науке более или менее важной роли. Они являются совершенно бесплодными предложениями, т.к. не ведут к выводам более глубокого содержания. Действительно, в математике ни одна теорема не является импликацией, в которой условие и заключение не были бы связаны по содержанию. Помимо связки “если, … то …”, в математических теоремах импликациями являются формулировки только необходимого или только достаточного условия.

Задания на построение достаточных и необходимых условий для школьников оказываются непростыми. При формировании этого умения необходимо особо отметить три момента:

а) используемая в математических утверждениях форма “необходимо и достаточно” соответствует связке “тогда и только тогда” (эквивалентность);

б) связка “для того чтобы …(A ), необходимо, чтобы …(B )” реализуется прямой импликацией A B . (Для того чтобы квадратное уравнение имело решение, необходимо, чтобы дискриминант был неотрицательным );

в) достаточное условие реализуется обратной импликацией B ® A и может на русском языке выражаться, например, так: “для того чтобы... (А), достаточно, чтобы... (В)”.

В старшей школе (10–11-е классы) у учащихся полезно сформировать умение строить отрицание к высказыванию на русском языке. Это умение необходимо, например, для доказательства теорем методом “от противного”. Строить отрицание даже к простым высказываниям не всегда просто. Например, к высказыванию На стоянке стоят красные Жигули ” следующие предложения отрицаниями являться не будут:

1) На стоянке стоят не красные Жигули ”;

2) На стоянке стоит белый Мерседес ”;

3) Красные Жигули стоят не на стоянке .

Отрицанием к этому высказыванию будет “На стоянке не стоят красные “Жигули”. Объяснить школьникам это можно так: отрицание к предложению должно полностью исключать истинность исходного высказывания. Если же на стоянке стоит белый “Мерседес”, то ничто не мешает красным “Жигулям” стоять тоже.

Об алгоритме построения отрицания к сложному высказыванию можно прочитать в книге Е.Андреевой, Л.Босовой, И.Фалиной “Математические основы информатики”.

Изучение кванторов до настоящего времени не было традиционным для школьного курса информатики. Однако теперь они входят в стандарт профильной школы. Проще всего продемонстрировать роль кванторов при построении все тех же отрицаний к высказываниям на русском языке, причем как к математическим, так и произвольным. Правило замены квантора общности на квантор существования и наоборот легко обосновать с помощью законов де Моргана (см. “Логические выражения” ).

6 От латинских слов idem - тот же самый и potens - сильный; дословно - равносильный.

7 Это определение легко распространяется на случай n высказываний (n > 2, n - натуральное число).

8 Это определение, как и предыдущее, распространяется на случай n высказываний (n > 2, n - натуральное число).

9 Успенский В.А., Верещагин Н.К., Плиско В.Е. Вводный курс математической логики. М.: Физматлит, 2002.

Кроме рассмотренных выше операций, мы будем употреблять еще две новые операции, связанные с особенностями логики предикатов. Операции эти выражают собой утверждения общности и существования.

Квантор - некоторый способ приписать наличие каких-либо свойств целому множеству объектов: (квантор общности) или просто (), (квантор существования).

1. Квантор общности. Пусть R (x) - вполне определенный предикат, принимающий значение И или Л для каждого элемента х некоторого поля М. Тогда под выражением (x)R(x) мы будем подразумевать высказывание истинное, когда R(х) истинно для каждого элемента х поля М, и ложное в противном случае. Это высказывание уже не зависит от х. Соответствующее ему словесное выражение будет: «для всякого х R (х) истинно».

Пусть теперь И(х)-формула логики предикатов, принимающая определенное значение, если входящие в нее переменные предметы и переменные предикаты замещены вполне определенным образом. Формула И(х) может содержать и другие переменные, кроме х. Тогда выражение И(х) при замещении всех переменных как предметов, так и предикатов, кроме х, представляет собой конкретный предикат, зависящий только от х. А формула (х)И(х) становится вполне определенным высказыванием. Следовательно, эта формула вполне определяется заданием значений всех переменных, кроме х, и, значит, от х не зависит. Символ (х) называется квантором общности .

2. Квантор существования. Пусть R(х) - некоторый предикат. Мы свяжем с ним формулу (x)R(x), определив ее значение как истину, если существует элемент поля М, для которого R(х) истинно, и как ложь в противном случае. Тогда если И(х) - определенная формула логики предикатов, то формула (x)И(x) также определена и от значения х не зависит. Знак (x) называется квантором существования .

Кванторы (х) и (х) называются двойственными друг другу.

Мы будем говорить, что в формулах (х)И(х) и (x)И(x) кванторы (х) и (х) относятся к переменному х или что переменное х связано соответствующим квантором.

Предметное переменное, не связанное никаким квантором, мы будем называть свободным переменным . Таким образом, мы описали все формулы логики предикатов.

Если две формулы И и В, отнесенные к некоторому полю М, при всех замещениях переменных предикатов, переменных высказываний и свободных предметных переменных соответственно индивидуальными предикатами, определенными на М, индивидуальными высказываниями и индивидуальными предметами из М, принимают одинаковые значения И или Л, то мы будем говорить, что эти формулы равносильны на поле М. (При замещениях переменных предикатов, высказываний и предметов мы, конечно, те из них, которые в формулах И и В обозначены одинаковым образом, замещаем также одинаковым образом).

Если две формулы равносильны на любых полях М, то мы будем их называть просто равносильными. Равносильные формулы могут быть замещаемы одна другой.

Равносильность формул позволяет приводить их в разных случаях к более удобному виду.

В частности, имеет место: И→ В равносильно И В.

Пользуясь этим, мы можем для любой формулы найти равносильную, в которой из операций алгебры высказываний имеются только &, и -.

Пример: (x)(А(х)→(у)В(у)) равносильна (x)(А(х)(у)В(у)).

Кроме того, для логики предикатов имеются равносильности, связанные с кванторами.

Существует закон, связывающий кванторы со знаком отрицания. Рассмотрим выражение (х)И(х).

Высказывание «(х)И(х) ложно», равносильно высказыванию: «существует элемент у, для которого И(у) ложно» или, что то же, «существует элемент у, для которого И(у) истинно». Следовательно, выражение (х)И(х) равносильно выражению (у)И(у).

Рассмотрим таким же образом выражение (х)И(х).

Это есть высказывание «(х)И(х) ложно». Но такое высказывание равносильно высказыванию: «для всех у И(у) ложно» или «для всех у И(у) истинно». Итак, (х)И(х) равносильно выражению (у)И(у).

Мы получили, таким образом, следующее правило:

Знак отрицания можно ввести под знак квантора, заменив квантор на двойственный.

Мы уже видели, что для каждой формулы существует равносильная ей формула, которая из операций алгебры высказываний содержит только &, и -.

Пользуясь равносильностями для каждой формулы можно найти равносильную, в которой знаки отрицания относятся к элементарным высказываниям и элементарным предикатам.

Для аксиоматического описания логики предикатов предназначено исчисление предикатов.

Исчисление предикатов - некоторая аксиоматическая система, предназначенная для моделирования некоторой среды и проверки каких-либо гипотез относительно свойств этой среды при помощи разработанной модели. Гипотезы при этом утверждают наличие или отсутствие некоторых свойств у некоторых объектов и выражаются в виде логической формулы. Обоснование гипотезы сводится, таким образом, к оценке выводимости и выполнимости логической формулы.



Похожие статьи