Внутренние и внешние силы. Система материальных точек

Внешние силы - это такие силы, которые действуют только на поверхность предмета, но не проникают внутрь его. К этим силам относятся все силы, развиваемые материальным объектом.

Внутренние силы - это такие силы, которые действуют сразу на все атомы передвигаемого предмета независимо от того, где они находятся: на поверхности или в середине предмета. К этим силам относятся силы инерции и силы поля: гравитационного, электрического, магнитного. И происходит это потому, что поле и носитель инерции физвакуум свободно проникают внутрь любого тела.

В механике внешними силами по отношению к данной системе материальных точек (т. е. такой совокупности материальных точек, в которой движение каждой точки зависит от положений или движений всех остальных точек) называются те силы, к-рые представляют собою действие на эту систему других тел (других систем материальных точек), не включенных нами в состав данной системы.

Внутренними силами являются силы взаимодействия между отдельными материальными точками данной системы. Подразделение сил на внешние и внутренние является совершенно условным: при изменении заданного состава системы некоторые силы, ранее бывшие внешними, могут стать внутренними, и обратно. Так, например, при рассмотрении

PRIMER движения системы, состоящей из земли и ее спутника луны, силы взаимодействия между этими телами будут внутренними силами для этой системы, а силы притяжения солнца, остальных планет, их спутников и всех звезд будут внешними силами по отношению к указанной системе. Но если изменить состав системы и рассматривать движение солнца и всех планет как движениеодной общей системы, то внешн. силами будут только силы притяжений, оказываемых

Если нагруженное тело находится в равновесии, то внутренние силы равны по значению внешним силам и противоположны им по направлению. Очевидно, что они препятствуют развитию деформации.Работа внутренних сил (U), с учетом их направления по отношению к деформации, всегда является отрицательной.

Работа внешних сил равна взятой с обратным знаком работе внутренних сил :

Пусть элемент стержня длиной испытывает растяжение (рис. 15.3, а).

Действие отброшенных частей стержня на рассматриваемый элемент заменим продольными силами N. Эти усилия показаны на рисунке штриховыми линиями. По отношению к элементу они являются как бы внешними. Вызываемое ими удлинение элемента равно: .

Действие рассматриваемого элемента на отброшенные части показано на рисунке сплошными линиями. Элементарная работа внутренних продольных сил, постепенно увеличивающихся, и противодействующих развитию удлинения, согласно теореме Клапейрона, выразится формулой: .

ЭЛЕМЕНТАРНАЯ РАБОТА ВНУТРЕННИХ ПОПЕРЕЧНЫХ СИЛ () ПРИ ЧИСТОМ СДВИГЕ (РИС. 15.3, Б)

При чистом сдвиге касательные напряжения равномерно распределены по всему сечению и определяются по формуле: .

Абсолютный сдвиг правого сечения элемента по отношению к левому сечению, с учетом закона Гука, равен: ,

тогда .

При поперечном изгибе касательные напряжения распределены по сечению неравномерно. В этом случае выражение для элементарной работы внутренних перерезывающих сил может быть представлено в виде: , где k – коэффициент, зависящий от формы поперечного сечения стержня. Например, для прямоугольного поперечного сечения .

ЭЛЕМЕНТАРНАЯ РАБОТА ВНУТРЕННИХ УСИЛИЙ ПРИ КРУЧЕНИИ

Поворот правого сечения элемента по отношению к левому сечению, происходящий под действием внешних по отношению к нему крутящих моментов (), показанных (см. рис. 15.3, в) штриховыми линиями, равен: .

Тогда работа внутренних крутящих моментов (они на рисунке не показаны) на этом угле поворота определяется по формуле: .

Пусть теперь элемент стержня испытывает изгиб. И пусть его правое поперечное сечение повернется на угол поворота по отношению к левому сечению (см. рис. 15.3, г).

Тогда внутренние изгибающие моменты, показанные (см. рис. 15.3, г) сплошными линиями, совершат на этом угле поворота работу:

.

При одновременном растяжении, кручении и прямом поперечном изгибе стержня (с учетом того, что работа каждого из внутренних усилий на перемещениях, вызываемых остальными усилиями, равна нулю) получим следующее выражение для элементарной работы внутренних сил упругости:

Интегрируя выражение по всей длине стержня, окончательно получим формулу работы внутренних сил .

Механической системой называется такая совокупность материальных точек или тел, в которой положение или движение каждой точки или тела зависит от положения и движения всех остальных. Так, например, при изучении движения Земли и Луны относительно Солнца совокупность Земли и Луны является механической системой, состоящей из двух материальных точек, при разрыве снаряда на осколки мы рассматриваем осколки как механическую систему. Механической системой является любой механизм или машина.

Если расстояния между точками механической системы не изменяются при движении или покое системы, то такая механическая система называется неизменяемой.

Понятие неизменяемой механической системы позволяет изучать в динамике произвольное движение твердых тел. При этом, как в статике и кинематике, под твердым телом будем понимать такое материальное тело, у которого расстояния между каждыми двумя точками не изменяется при движении или покое тела. Любое твердое тело можно мысленно разбить на достаточно большое число достаточно малых частей, совокупность которых можно приближенно рассматривать как механическую систему. Так как твердое тело образует непрерывную протяженность, то для установления его точных (а не приближенных) свойств необходимо совершить предельный переход, предельное дробление тела, когда размеры рассматриваемых частей тела одновременно стремятся к нулю.

Таким образом, знание законов движения механических систем позволяет изучать законы произвольных движений твердых тел.

Все силы, действующие на точки механической системы, разделяют на внешние и внутренние силы.

Внешними силами по отношению к данной механической системе называются силы, действующие на точки этой системы со стороны материальных точек или тел, не входящих в систему. Обозначения: -внешняя сила, приложенная к -ой точке; -главный вектор внешних сил; -главный момент внешних сил относительно полюса.

Внутренними силами называются силы, с которыми материальные точки или тела, входящие в данную механическую систему, действуют на точки или тела этой же системы. Другими словами, внутренние силы–это силы взаимодействия между точками или телами данной механической системы. Обозначения: -внутренняя сила, приложенная к -ой точке; -главный вектор внутренних сил; -главный момент внутренних сил относительно полюса.

3.2 Свойства внутренних сил.

Первое свойство. Главный вектор всех внутренних сил механической системы равен нулю, то есть

. (3.1)

Второе свойство. Главный момент всех внутренних сил механической системы относительно любого полюса или оси равен нулю, то есть

, . (3.2)

Рис.17
Для доказательства этих свойств заметим, что, так как внутренние силы-это силы взаимодействия материальных точек, входящих в систему, то по третьему закону Ньютона любые две точки системы (рис. 17) действуют друг на друга с силами и , равными по модулю и противоположными по направлению.

Таким образом, для каждой внутренней силы имеется прямопротивоположная внутренняя сила и, следовательно, внутренние силы образуют некоторое множество попарно противоположных сил. Но геометрическая сумма двух прямо противоположных сил равна нулю, поэтому

.

Как было показано в статике, геометрическая сумма моментов двух прямо противоположных сил относительно одного и того же полюса равна нулю, поэтому

.

Аналогичный результат получается и при вычислении главного момента относительно оси

.

3.3 Дифференциальные уравнения движения механической системы.

Рассмотрим механическую систему, состоящую из материальных точек, массы которых . Для каждой точки применим основное уравнение динамики точки

, ,

, (3.3)

де -равнодействующая внешних сил, приложенная к -ой точке, а -равнодействующая внутренних сил.

Систему дифференциальных уравнений (3.3) называют дифференциальными уравнениями движения механической системы в векторной форме.

Проектируя векторные уравнения (3.3) на прямоугольные декартовые оси координат получим дифференциальные уравнения движения механической системы в координатной форме:

,

, (3.4)

,

.

Эти уравнение представляют собой систему обыкновенных дифференциальных уравнений второго порядка. Следовательно, для нахождения движения механической системы по заданным силам и начальным условиям для каждой точки этой системы, необходимо проинтегрировать систему дифференциальных уравнений. Интегрирование системы дифференциальных уравнений (3.4), вообще говоря, сопряжено со значительными, зачастую непреодолимыми математическими трудностями. Однако в теоретической механике разработаны методы, которые позволяют обойти основные трудности, возникающие при использовании дифференциальных уравнений движения механической системы в форме (3.3) или (3.4). К их числу относятся методы, которые дают общие теоремы динамики механической системы, устанавливающие законы изменения некоторых суммарных (интегральных) характеристик системы в целом, а не закономерности движения отдельных её элементов. Это так называемые меры движения-главный вектор количества движения; главный момент количества движения; кинетическая энергия. Зная характер изменения этих величин, удается составить частичное, а иногда и полное представление о движении механической системы.

IV. ОСНОВНЫЕ (ОБЩИЕ) ТЕОРЕМЫ ДИНАМИКИ ТОЧКИ И СИСТЕМЫ

4.1 Теорема о движении центра масс.

4.1.1.Центр масс механической системы.

Рассмотрим механическую систему, состоящую из материальных точек, массы которых .

Массой механической системы, состоящей из материальных точек, будем называть сумму масс точек системы:

Определение. Центром масс механической системы называется геометрическая точка , радиус вектор которой определяется по формуле:

где -радиус-вектор центра масс; -радиус-векторы точек системы; -их массы (рис.18).

; ; . (4.1")

Центр масс является не материальной точкой, а геометрической . Он может не совпадать ни с одной материальной точкой механической системы. В однородном поле силы тяжести центр масс совпадает с центром тяжести. Это, однако, не означает, что понятия центра масс и центра тяжести одинаковы. Понятие центра масс применимо к любым механическим системам, а понятие центра тяжести применимо только к механическим системам, находящимся под действием сил тяжести (то есть притяжения к Земле). Так, например, в небесной механике при рассмотрении задачи о движении двух тел, например Земли и Луны, можно рассматривать центр масс этой системы, но нельзя рассматривать центр тяжести.

Таким образом, понятие центра масс более широкое, чем понятие центра тяжести.

4.1.2. Теорема о движении центра масс механической системы.

Теорема . Центр масс механической системы движется как материальная точка, масса которой равна массе всей системы и к которой приложены все внешние силы, действующие на систему, то есть

. (4.2)

Здесь -главный вектор внешних сил.

Доказательство. Рассмотрим механическую систему, материальные точки которой движутся под действием внешних и внутренних сил. -равнодействующая внешних сил, приложенная к -ой точке, а -равнодействующая внутренних сил. Согласно (3.3) уравнение движения -ой точки имеет вид

, .

Сложив левые и правые части этих уравнений, получим

.

Так как главный вектор внутренних сил равен нулю (п.3.2, первое свойство), то

.

Преобразуем левую часть этого равенства. Из формулы (4.1), определяющей радиус-вектор центра масс, следует:

.

Всюду в дальнейшем будем предполагать, что рассматриваются только механические системы постоянного состава, то есть и . Возьмем от обеих частей этого равенства вторую производную по времени

Так как , - ускорение центра масс системы, то, окончательно,

.

Проектируя обе части этого векторного равенства на координатные оси, получим:

,

, (4.3)

,

где , , -проекции силы ;

Проекции главного вектора внешних сил на оси координат.

Уравнения (4.3)-дифференциальные уравнения движения центра масс механической системы в проекциях на декартовые оси координат.

Из уравнений (4.2) и (4.3) следует, что только одними внутренними силами нельзя изменить характер движения центра масс механической системы. Внутренние силы могут оказывать косвенное влияние на движение центра масс только через внешние силы. Например, в автомобиле внутренние силы, развиваемые двигателем, влияют на движение центра масс через силы трения колес с дорогой.

4.1.3. Законы сохранения движения центра масс

(следствия из теоремы).

Из теоремы о движении центра масс можно получить следующие следствия.

Следствие 1. Если главный вектор внешних сил, действующих на систему, равен нулю, то её центр масс находится в покое или движется прямолинейно и равномерно.

Действительно, если главный вектор внешних сил , то из уравнения (4.2):

Если, в частности, начальная скорость центра масс , то центр масс находится в покое. Если же начальная скорость , то центр масс движется прямолинейно и равномерно.

Следствие 2. Если проекция главного вектора внешних сил на какую-либо неподвижную ось равна нулю, то проекция скорости центра масс механической системы на эту ось не изменяется.

Это следствие вытекает из уравнений (4.3). Пусть, например, , тогда

,

отсюда . Если при этом в начальный момент , то:

то есть проекция центра масс механической системы на ось в этом случае не будет перемещаться вдоль оси . Если же , то проекция центра масс на ось движется равномерно.

4.2 Количество движения точки и системы.

Теорема об изменении количества движения.

4.2.1. Количество движения точки и системы.

Определение. Количеством движения материальной точки называется вектор, равный произведению массы точки на её скорость , то есть

. (4.5)

Вектор коллинеарен вектору и направлен по касательной к траектории материальной точки (рис.19).

Количество движения точки в физике часто называют импульсом материальной точки.

Размерность количества движения в СИ-кг·м/c или Н·с.

Определение. Количеством движения механической системы называется вектор , равный векторной сумме количеств движений (главный вектор количеств движений) отдельных точек, входящих в систему, то есть

(4.6)

Проекции количества движения на прямоугольные декартовые оси координат:

Вектор количества движения системы в отличие от вектора количества движения точки не имеет точки приложения. Вектор количества движения точки приложен в самой движущейся точке, а вектор является свободным вектором.

Лемма количеств движения. Количество движения механической системы равно массе всей системы, умноженной на скорость её центра масс, то есть

Доказательство. Из формулы (4.1), определяющей радиус-вектор центра масс, следует:

.

Возьмем от обеих частей производную по времени

, или .

Отсюда получим , что и требовалось доказать.

Из формулы (4.8) видно, что если тело движется так, что его центр масс остается неподвижным, то количество движения тела равно нулю. Например, количество движения тела, вращающегося вокруг неподвижной оси, проходящей через его центр масс (рис.20),

, т.к.

Если движение тела будет плоскопараллельным, то количество движения не будет характеризовать вращательную часть движения вокруг центра масс. Например, для колеса, которое катится (рис.21), независимо от того, каким образом происходит вращение колеса вокруг центра масс . Количество движения характеризует только поступательную часть движения вместе с центром масс.

4.2.2. Теорема об изменении количества движения механической системы

в дифференциальной форме.

Теорема. Производная по времени от количества движения механической системы равна геометрической сумме (главному вектору) внешних сил, действующих на эту систему, т.е.

. (4.9)

Доказательство. Рассмотрим механическую систему, состоящую из материальных точек, массы которых ; -равнодействующая внешних сил, приложенная к -ой точке. В соответствии с леммой количества движения-формула (4.8):

Возьмем от обеих частей этого равенства производную по времени

.

Правая часть этого равенства из теоремы о движении центра масс-формула (4.2):

.

Окончательно:

и теорема доказана.

В проекциях на прямоугольные декартовые оси координат:

; ; , (4.10)

то есть производная по времени от проекции количества движения механической системы на какую либо координатную ось равна сумме проекций (проекции главного вектора) всех внешних сил системы на ту же ось.

4.2.3. Законы сохранения количества движения

(следствия из теоремы)

Следствие 1 . Если главный вектор всех внешних сил механической системы равен нулю, то количество движения системы постоянно по величине и направлению.

Действительно, если , то из теоремы об изменении количества движения, т. е. из равенства (4.9) следует, что

Следствие 2. Если проекция главного вектора всех внешних сил механической системы на некоторую неподвижную ось равна нулю, то проекция количества движения системы на эту ось остается постоянной.

Пусть проекция главного вектора всех внешних сил на ось равна нулю: . Тогда из первого равенства (4.10):

4.2.4. Теорема об изменении количества движения механической системы

в интегральной форме.

Элементарным импульсом силы называется векторная величина , равная произведению вектора силы на элементарный промежуток времени

. (4.11)

Направление элементарного импульса совпадает с направлением вектора силы.

Импульс силы за конечный промежуток времени равен определенному интегралу от элементарного импульса

. (4.12)

Если сила постоянна по величине и направлению (), то ее импульс за время равен:

Проекции импульса силы на оси координат:

Докажем теорему об изменении количества движения механической системы в интегральной форме.

Теорема. Изменение количества движения механической системы за некоторый промежуток времени равно геометрической сумме импульсов внешних сил системы за этот же промежуток времени, т.е.

(4.14)

Доказательство. Пусть в момент времени количество движения механической системы равно , а в момент времени - ; -импульс внешней силы, действующей на -ю точку за время .

Используем теорему об изменении количества движения в дифференциальной форме-равенство (4.9):

.

Умножая обе части этого равенства на и интегрируя в пределах от до , получим

, , .

Теорема об изменении количества движения в интегральной форме доказана.

В проекциях на оси координат согласно (4.14):

,

, (4.15)

.

4.3. Теорема об изменении кинетического момента.

4.3.1. Кинетический момент точки и системы.

В статике были введены и широко использовались понятия моментов силы относительно полюса и оси. Так как количество движения материальной точки является вектором, то можно определить его моменты относительно полюса и оси таким же образом, как определяются моменты силы.

Определение. относительно полюса называется момент её вектора количества движения относительно того же полюса , т. е.

. (4.16)

Кинетический момент материальной точки относительно полюса представляет собой вектор (рис.22), направленный перпендикулярно плоскости, содержащей вектор и полюс в ту сторону, откуда вектор относительно полюса виден направленным против вращения часовой стрелки. Модуль вектора

равен произведению модуля на плечо -длина перпендикуляра, опущенного из полюса на линию действия вектора :

Кинетический момент относительно полюса может быть представлен в виде векторного произведения: кинетический момент материальной точки относительно полюса равен векторному произведению радиус вектора , проведенного из полюса в точку на вектор количества движения :

(4.17)

Определение. Кинетическим моментом материальной точки относительно оси называется момент её вектора количества движения относительно той же оси , т. е.

. (4.18)

Кинетический момент материальной точки относительно оси (рис.23) равен взятому со знаком плюс или минус произведению проекции вектора на плоскость перпендикулярную к оси , на плечо этой проекции :

где плечо -длина перпендикуляра опущенного из точки пересечения оси с плоскостью на линию действия проекции , при этом , если, смотря навстречу оси , видно проекцию относительно точки направленной против вращения часовой стрелки, и в противном случае.

Размерность кинетического момента в СИ-кг·м 2 /с, или Н·м·с.

Определение. Кинетическим моментом или главным моментом количества движения механической системы относительно полюса называется вектор, равный геометрической сумме кинетических моментов всех материальных точек системы относительно этого полюса:

. (4.19)

Определение. Кинетическим моментом или главным моментом количества движения механической системы относительно оси называется алгебраическая сумма кинетических моментов всех материальных точек системы относительно этой оси:

. (4.20)

Кинетические моменты механической системы относительно полюса и оси, проходящей через этот полюс, связаны такой же зависимостью, как и главные моменты системы сил относительно полюса и оси:

-проекция кинетического момента механической системы относительно полюса на ось , проходящую через этот полюс, равна кинетическому моменту системы относительно этой оси, т. е.

. (4.21)

4.3.2. Теоремы об изменении кинетического момента механической системы.

Рассмотрим механическую систему, состоящую из материальных точек, массы которых . Докажем теорему об изменении кинетического момента механической системы относительно полюса.

Теорема. Производная по времени от кинетического момента механической системы относительно неподвижного полюса равна главному моменту внешних сил системы относительно того же полюса, т. е.

. (4.22)

Доказательство. Выберем некоторый неподвижный полюс . Кинетический момент механической системы относительно этого полюса по определению-равенство (4.19):

.

Продифференцируем по времени это выражение:

Рассмотрим правую часть этого выражения. Вычисляя производную произведения:

, (4.24)

Здесь учтено, что . Векторы и имеют одинаковое направление, их векторное произведение равно нулю, следовательно, первая сумма в равенстве (4.24).

Изучение данных вопросов необходимо для динамики колебательного движения механических систем, теории удара, для решения задач в дисциплинах «Сопротивление материалов» и «Детали машин».

Механической системой материальных точек или тел называется такая их совокупность, в которой положение или движение каждой точки (или тела) зависит от положения и движения всех остальных.

Материальное абсолютно твердое тело мы также будем рассматривать как систему материальных точек, образующих это тело и связанных между собой так, что расстояния между ними не изменяются, все время остаются постоянными.

Классическим примером механической системы является солнечная система, в которой все тела связаны силами взаимного притяжения. Другим примером механической системы может служить любая машина или механизм, в которых все тела связаны шарнирами, стержнями, тросами, ремнями и т.п. (т.е. различными геометрическими связями). В этом случае на тела системы действуют силы взаимного давления или натяжения, передаваемые через связи.

Совокупность тел, между которыми нет никаких сил взаимодействия (например, группа летящих в воздухе самолетов), механическую систему не образует.

В соответствии со сказанным, силы, действующие на точки или тела системы, можно разделить на внешние и внутренние.

Внешними называются силы, действующие на точки системы со стороны точек или тел, не входящих в состав данной системы.

Внутренними называются силы, действующие на точки системы со стороны других точек или тел этой же системы. Будем обозначать внешние силы символом - , а внутренние - .

Как внешние, так и внутренние силы могут быть в свою очередь или активными , или реакциями связей.

Реакции связей или просто – реакции , это силы которые ограничивают движение точек системы (их координаты, скорость и др.). В статике это были силы заменяющие связи. В динамике для них вводится более общее определение.

Активными или задаваемыми силами называются все остальные силы, все кроме реакций.

Необходимость этой классификации сил выяснится в следующих главах.

Разделение сил на внешние и внутренние является условным и зависит от того, движение какой системы тел мы рассматриваем. Например, если рассматривать движение всей солнечной системы в целом, то сила притяжения Земли к Солнцу будет внутренней; при изучении же движения Земли по её орбите вокруг Солнца та же сила будет рассматриваться как внешняя.

Внутренние силы обладают следующими свойствами:

1. Геометрическая сумма (главный вектор) всех внутренних сил системы равняется нулю. В самом деле, по третьему закону динамики любые две точки системы (рис.31) действуют друг на друга с равными по модулю и противоположно направленными силами и , сумма которых равна нулю. Так как аналогичный результат имеет место для любой пары точек системы, то

Представить сильного человека достаточно легко. Мощное телосложение, большие мышцы, уверенный взгляд. Но всегда ли эти признаки доказывают настоящую силу? И что это за внутренняя сила, о которой можно очень часто услышать? Совпадает ли она с внушительным внешним видом? Может ли физически менее развитый человек быть сильнее превосходящего его противника? В каких случаях проявляется внутренняя сила человека? Можно ли ее развивать, либо это врожденное качество, которое передается по наследству? Попытаемся разобраться в этом вопросе.

Что такое внутренняя сила?

Внутренняя сила - это сила духа, совокупность волевых качеств, позволяющих преодолевать различные жизненные трудности. Соответственно, проявляется она в стрессовых случаях, когда человек, ощущая, что он не может контролировать ситуацию, все-равно продолжает действовать «на характере».

Это качество буквально наделяет людей сверхчеловеческими способностями, позволяя им проходить там, где сломаются даже двухметровые вышибалы. Внутренняя сила не зависит от возраста, пола или других параметров человека.

Хотите принимать лучшие решения , найти идеальную карьеру и реализовать ваш потенциал по максимуму? Узнайте бесплатно , каким человеком вам суждено было стать при рождении с помощью системы

Проявиться она может у любого, главное не подавлять ее. Основными факторами, подавляющими развитие внутренней силы можно считать вредные , комплексы, стрессы, страхи, переживания и .

Как возникает внутренняя сила?

Внутренняя сила человека не зависит от его внешней мощи, но и не исключает ее. Ведь на любую силу, всегда найдется сила больше. И в случае столкновения с ней, как раз, и проявляется внутренняя сила.

Безусловно, проще победить более слабого соперника. Но все мы знаем примеры, когда маленький, но «духовитый» человек выходит победителем из стычки с кем-то, явно превосходящим его размерами. Почему так происходит? Видимо он более и эта уверенность передается противнику, буквально обезоруживая его. По принципу хрестоматийной Моськи, вселяющей ужас во всех местных слонов.

Можно выделить пять основных компонентов, которые составляют внутреннюю силу человека:

  • Сила духа – это стержень личности;
  • Жизненная энергия – все, что необходимо для жизни;
  • Сила воли – внутренний резерв, открывающийся во время трудностей;
  • Самоконтроль – умение контролировать свое тело и мысли;
  • Психическая энергия – эмоциональная и психическая устойчивость.

Их взаимодействие и определяет насколько сильным окажется человек в той или иной ситуации, потому очень важно уделять внимание развитию каждого из этих компонентов.

На земной поверхности постоянно действуют силы, которые разрушают скалы, размывают берега, переносят массы раздробленных и растворенных минеральных веществ, осаждают и накапливают слои осадков. Подобные процессы, господствующие на поверхности Земли , называются внешними или экзогенными . С давних пор от них отделяют глубинные, внутренние , или эндогенные , силы, источники которых находятся в недрах планеты. Извне воздействуют на Землю силы притяжения Луны и Солнца . Сила притяжения других небесных тел очень мала, и ею можно пренебречь. Однако некоторые ученые считают, что в геологической истории Земли за десятки миллионов лет гравитационные воздействия из космоса могут значительно возрастать. В результате их происходят, например, морские приливы. Некоторые ученые к экзогенным силам относят и земное притяжение, из-за которого происходят оползни и обвалы, стекают воды, перемещаются ледники и т. д.

Экзогенные силы разрушают и химически преобразуют горные породы , переносят рыхлые и растворимые продукты разрушения водой, ветром и ледниками. Одновременно идет отложение, накопление (аккумуляция) продуктов разрушения на суше или на дне водоемов в виде осадков (в дальнейшем они преобразуются в осадочные горные породы). Внешние силы участвуют, в сочетании с внутренними, в формировании рельефа Земли , в образовании осадочных пород и многих типов месторождений полезных ископаемых (например, руд алюминия - бокситов, никеля и др.).

Обычно считается, что от соотношения движений земной коры и денудации зависит направление развития рельефа : при преобладании разрушения и денудации над тектоническими процессами происходит общее нивелирование и понижение рельефа . Горы постепенно превращаются в пенеплены - слабо всхолмленные, местами почти ровные, предельные равнины. Под влиянием новейших тектонических движений пенеплены поднимаются, образуя высокие плоские хребты (например в Саянах, в Тянь-Шане), или опускаются, покрываясь толщей коры выветривания.

Земная поверхность, согласно подобным представлениям, выглядит как арена борьбы внутренних и внешних сил планеты. Первые вызывают движения в земной коре, вторые - разрушают поверхность гор и перераспределяют продукты разрушения. Выходит, будто внутренние силы планеты созидательные, «главные», без которых замерла бы жизнь Земли , сгладился бы рельеф и повсюду расстилалась гладь Мирового океана . Так ли это?

Прежде чем ответить на этот вопрос, познакомимся с внутренними (эндогенными) силами. У них главный источник энергии - внутренняя теплота в недрах Земли . К внутренним силам относятся: распад радиоактивных веществ, различные химические реакции и превращения вещества в недрах, внезапные разрядки возникающих в толще планеты напряжений. Эндогенные силы вызывают движения магмы, вулканическую деятельность, метаморфизм горных пород , землетрясения , медленные поднятия и опускания земной коры, ее горизонтальные перемещения, разрывы в толще горных пород , образование месторождений полезных ископаемых и т. д.

Они ярко проявляются в магматизме - сложных процессах возникновения и движения магмы (расплавленной огненно-жидкой массы) в верхние горизонты коры и к поверхности Земли . Она имеет преимущественно силикатный состав и образуется в земной коре или (редко) в верхней мантии. Главные типы магм: основная (базальтовая) и кислая (гранитная). Извергаясь на поверхность Земли , магма образует вулканы .

Это эффузивный магматизм.

Магма не всегда изливается, а часто внедряется в толщу горных пород и там медленно остывает. Так образуются интрузии . Слагающие их магматические породы называют интрузивными. Формируясь в условиях медленного охлаждения магмы под большим давлением, интрузивные породы приобретают правильную равномерно-зернистую структуру. В процессе денудации массивы интрузивных пород могут оказаться на земной поверхности. Например, очень много гранитных массивов в Забайкалье, есть они на Урале, в Украине, в Средней Азии.

Из магматических внедрений наиболее известны лакколиты - грибообразные или подобные караваям интрузии, приподнявшие осадочные слои. Лакколиты залегают неглубоко, и приподнятые слои иногда образуют огромные купола - диаметром от сотен метров до 5-6 км и более. Широко известны лакколиты района Минеральных Вод на Северном Кавказе, поднимающиеся среди ровного плато: горы Железная, Бештау, Машук и др.; Аюдаг - в Крыму.

Дайки - результат внедрения магмы по трещинам в земную кору. Нередко породы, слагающие их, бывают более твердыми, чем окружающие; поэтому при выветривании дайки остаются в виде стены. Толщина их может достигать десятков и даже сотен метров. Трещинные интрузии небольшой мощности и неправильной формы называют магматическими жилами . Иногда в узле пересечения трещин залегают штоки , подобные столбам. Крупные массивы глубинных горных пород , главным образом гранитоидов, удлиненно-овальной формы, залегающих на значительной глубине, называются батолитами. Они достигают 2000 км в длину и 100 км и более в ширину. С гранитными батолитами связаны месторождения олова, вольфрама, золота и многих других металлов.

Медленные поднятия и опускания обширных участков земной коры сопровождают всю историю Земли , они происходят, конечно, и в наши дни. Направление этих колебательных, или эпейрогенических, движений (эпейрогенез) с течением времени изменяется: поднимающиеся участки начинают погружаться, и наоборот. Скорость таких движений настолько мала, что за короткий отрезок времени их заметить трудно. Скорости выражаются долями миллиметров в год, а предельные - сантиметрами в год. Классический пример опусканий - территория Голландии. Значительная ее часть находится ниже уровня моря и от вторжения моря защищена дамбами. Они надстраиваются по мере опускания суши. Скорость опускания здесь - 0,5-0,7 см/год. А поднимается земная кора, например, в Швеции и Финляндии, где по берегам Ботнического залива многие порты оказались удаленными от моря на значительное расстояние.

Внутренние силы работают в недрах планеты и совершенно скрыты от наших глаз. Эпейрогенические колебательные движения столь неторопливы, что заметить их также нельзя. Конечно, некоторые проявления внутренней жизни Земли видны на поверхности (вулканы) или ощущаются людьми (землетрясения). А вот интрузии, дайки, жилы - результаты вековых движений поверхности, разрывы земной коры и многое другое - разве все это может наблюдать краевед? Да, может. Особенно в горной местности, на обнажениях, где хорошо видны, вскрыты эрозией слои горных пород, жилы, штоки, дайки и т. п. В разных районах нашей страны имеются обнажения горных пород, в которых выходят на поверхность отложения самых разных геологических эпох: от древнейших пород (они обнажаются в пределах Балтийского щита, Восточной Сибири, Украинского кристаллического массива) до современных, созданных в результате деятельности человека.

В конце прошлого века было открыто явление радиоактивности. Энергия распада ядер очень велика, радиоактивных минералов в недрах много. Ученые стали подсчитывать мощности внешних и внутренних источников энергии Земли . Выяснилось, что среди них абсолютно преобладает лучистая энергия Солнца . Перехватываемая Землей лучистая энергия Солнца в тысячи раз превышает все внутренние источники, вместе взятые. Выходит, внешние силы должны играть главную роль в жизни нашей планеты. По мнению советского ученого-естествоиспытателя В. И. Вернадского, в глубинах планеты ниже земной коры геологическая активность быстро затухает. Действительно, почти все эпицентры землетрясений и вулканические очаги приурочены к земной коре и отчасти к подстилающему ее слою астеносферы (области относительно низкой вязкости подкорового вещества, которое частично находится в пластичном состоянии). Но ведь, как известно, земная кора - это область былых биосфер. Почти все слагающие ее породы некогда побывали на земной поверхности, подверглись «обработке» внешними силами и накопили в той или иной форме солнечную энергию. А затем, опускаясь на многие километры в недра Земли , под огромным давлением вышележащих пород они отдают накопленную энергию. Теперь она становится как бы внутренней тепловой (геотермальной) энергией Земли, вызывая множество геологических процессов как в глубинах (например, магматизм), так и на поверхности (вулканизм и др.).

    Строение вулкана: 1 - кальдера; 2 - сомма; 3 - конус, 4 - кратер; 5 - жерло. 6 - лавовый поток; 7 - лавовый очаг.

    Залегание магматических пород: Б - батолит; Л - лакколит; Ш - шток; Ж - жила; П - покров.

    Типы вулканов: 1 - площадной; 2 - трещинный; 3 - гавайский; 4 - стромболианский; 5 - везувианский; 6 - плинианский.



Похожие статьи