Уравнения движения относительно центра масс. Уравнение движения центра масс системы

Дифференциальные уравнения движения системы

Рассмотрим систему, состоящую из $n$ материальных точек. Выделим какую-нибудь точку системы с массой $m_{k}.$ Обозначим равнодействующую всех приложенных к точке внешних сил (и активных, и реакций связей) через $\overline{F}_{k}^{e} $, а равнодействующую всех внутренних сил -- через $\overline{F}_{k}^{l} $. Если точка имеет при этом ускорение $\overline{a_{k} }$, то по основному закону динамики:

Аналогичный результат получим для любой точки. Следовательно, для всей системы будет:

Уравнения (1) представляют собой дифференциальные уравнения движения системы в векторной форме.

Проектируя равенства (1) на координатные оси, получим уравнения движения системы в дифференциальной форме в проекциях на эти оси.

Однако при решении многих конкретных задач необходимость находить закон движения каждой из точек системы не возникает, а бывает достаточно найти характеристики, определяющие движение всей системы в целом.

Теорема о движении центра масс системы

Для определения характера движения системы требуется знать закон движения ее центра масс. Центром масс или центром инерции системы называется такая воображаемая точка, радиус-вектор $R$которой выражается через радиус векторы $r_{1} ,r_{2} ,...$материальных точек по формуле:

$R=\frac{m_{1} r_{1} +m_{2} r_{2} +...+m_{n} r_{n} }{m} $, (2)

где $m=m_{1} +m_{2} +...+m_{n} $ - общая масса всей системы.

Чтобы найти этот закон, обратимся к уравнениям движения системы (1) и сложим почленно их левые и правые части. Тогда получим:

$\sum m_{k} \overline{a}_{k} =\sum \overline{F}_{k}^{e} +\sum \overline{F}_{k}^{l} $. (3)

Из формулы (2) имеем:

Беря вторую производную по времени, получаем:

$\sum m_{k} \overline{a}_{k} =M\overline{a}_{c} $, (4)

где $\overline{a}_{c} $- ускорение центра масс системы.

Так как по свойству внутренних сил в системе $\sum \overline{F}_{k}^{l} =0$, получим окончательно из равенства (3), учтя (4):

$M\overline{a}_{c} =\sum \overline{F}_{k}^{e} $. (5)

Уравнение (5) выражает теорему о движении центра масс системы: произведение массы системы на ускорение ее центра масс равно геометрической сумме всех действующих на систему внешних сил или центр масс системы движется как материальная точка , масса которой равна массе всей системы и к которой приложены все внешние силы, действующие на систему.

Проецируя обе части равенства (5) на координатные оси, получим:

$M\ddot{x}_{c} =\sum \overline{F}_{kx}^{e} $, $M\ddot{y}_{c} =\sum \overline{F}_{ky}^{e} $, $M\ddot{z}_{c} =\sum \overline{F}_{kz}^{e} $. (6)

Эти уравнения представляют собой дифференциальные уравнения движения центра масс в проекциях на оси декартовой системы координат.

Значение теоремы состоит в следующем:

Теорема

  • Поступательно движущееся тело можно всегда рассматривать как материальную точку с массой, равной массе тела. В остальных случаях тело можно рассматривать как материальную точку лишь тогда, когда практически для определения положения тела достаточно знать положение его центра масс и допустимо по условиям задачи не принимать во внимание вращательную часть движения тела;
  • Теорема позволяет исключать из рассмотрения все наперед неизвестные внутренние силы. В этом ее практическая ценность.

Пример

Металлическое кольцо, подвешенное на нити к оси центробежной машины равномерно вращается с угловой скоростью $\omega $. Нить составляет угол $\alpha $с осью. Найти расстояние от центра кольца до оси вращения.

\[\omega \] \[\alpha \]

На нашу систему действует сила тяжести $\overline{N}$ $\overline{N}$ $\alpha \alpha$, сила натяжения нити и центростремительное ускорение.

Запишем второй закон Ньютона для нашей системы:

Спроецируем обе части на оси x и y:

\[\left\{ \begin{array}{c} N\sin \alpha =ma; \\ N\cos \alpha =mg; \end{array} \right.(4)\]

Разделив одно уравнение на другое, получим:

Так как $a=\frac{v^{2} }{R} ;$$v=\omega R$, находим искомое расстояние:

Ответ: $R=\frac{gtg\alpha }{\omega ^{2} } $

1. Уравнение движения центра масс

Особенностью плоского движения является то, что ось вращения сохраняет свою ориентацию в пространстве и остается перпендикулярной плоскости, в которой движется центр масс. Еще раз подчеркнем, что уравнение моментов (3.20) записано относительно, в общем случае, ускоренно движущегося центра масс, однако, как было отмечено в начале лекции, оно имеет такой же вид, как и уравнение моментов относительно неподвижной точки.

В качестве примера рассмотрим задачу о скатывании цилиндра с наклонное плоскости. Приведем два способа решения этой задачи с использованием уравнений динамики твердого тела.

Первый способ. Рассматривается вращение цилиндра относительно оси, проходящее через центр масс (рис. 3.11).

Система уравнений (3.19 - 3.20) имеет вид:

К этой системе необходимо добавить уравнение кинематической связи

(3.23)

Последнее уравнение получается из условия, что цилиндр скатывается без проскальзывания, то есть скорость точки М цилиндра равна нулю.

Уравнение движения центра масс (3.1) запишем для проекций ускорения и сил на ось x вдоль наклонной плоскости, а уравнение моментов (3.22) - для проекций углового ускорения и момента силы трения на ось y , совпадающую с осью цилиндра. Направления осей x и у выбраны согласованно, в том смысле, что положительному линейному ускорению оси цилиндра соответствует положительное же угловое ускорение вращения вокруг этой оси. В итоге получим:

(3.27)

Следует подчеркнуть, что - сила трения сцепления - может принимать любое значение в интервале от О до (сила трения скольжения) в зависимости от параметров задачи. Работу эта сила не совершает, но обеспечивает ускоренное вращение цилиндра при его скатывании с наклонной плоскости. В данном случае

Качение без проскальзывания определяется условием

Мгновенная ось вращения проходит через точку соприкосновения цилиндра и плоскости (точку М). При таком подходе отпадает необходимость в уравнении движении центра масс и уравнении кинематической связи. Уравнение моментов относительно мгновенной оси имеет вид:

(3.33)
Кинетическая энергия при плоском движении.

Кинетическая энергия твердого тела представляет собой сумму кинетических энергий отдельных частиц:

(3.37)

где - скорость центра масс тела, - скорость i-й частицы относительно системы координат, связанной с центром масс и совершающей поступательное движение вместе с ним. Возводя сумму скоростей в квадрат, получим:

(3.38)

так как (суммарный импульс частиц в системе центра масс равен нулю).

Таким образом, кинетическая энергия при плоском движении равна сумме кинетических энергий поступательного и вращательного движений (теорема Кенига). Если рассматривать плоское движение как вращение вокруг мгновенной оси, то кинетическая энергия тела есть энергия вращательного движения.

В этой связи задачу о скатывании цилиндра с наклонной плоскости можно решить, используя закон сохранения механической энергии (напомним, что сила трения при качении без проскальзывания работу не совершает).

Приращение кинетической энергии цилиндра равно убыли его потенциальное энергии:

Дифференцируя обе части этого уравнения по времени, получим

(3.41)

откуда для линейного ускорения оси цилиндра будем иметь то же выражение, что и при чисто динамическом способе решения (см. (3.27, 3.36)).

Замечание. Если цилиндр катится с проскальзыванием, то изменение его кинетической энергии будет определяться также и работой сил трения. Последняя, в отличие от случая, когда тело скользит по шероховатой поверхности, не вращаясь, определяется, в соответствии с (3.14), полным углом поворота цилиндра, а не расстоянием, на которое переместилась его ось.


Заключение

Динамика твердого тела на данном этапе используется для тел, движущихся в сплошной среде.

В задаче о полете тела с тремя несущими поверхностями при наличии динамической асимметрии определены условия, при которых проявляются синхронизмы 1:3. С увеличением угловой скорости вращения тела около продольной оси даже на поверхности рассеивания заметно ослабление этого эффекта.

Разработана программа имитационного моделирования комплекса задач по динамике полета противоградовых ракет. С ее помощью построены таблицы введения поправок на установочные углы запуска ракет для наилучшей компенсации вредного влияния ветра.

Создана механико-математическая модель полета бумеранга. Открыта лаборатория навигации и управления.

Разработан и внедрен на аэродинамической трубе А-8 комплекс механического оборудования и сопутствующей измерительной аппаратуры для проведения динамических испытаний моделей. Определены коэффициенты демпфирования поперечных колебаний осесимметричных оперенных тел различного удлинения при раскрутке вокруг собственной оси в до- и сверхзвуковом потоках.

На основе численного решения задачи о плоских движениях аэродинамического маятника (с несущей поверхностью в виде прямоугольной пластины) в несжимаемой жидкости с учетом динамики вихрей определены области существования всех типов движения маятника, включая режимы автоколебаний и авторотации. Открыта лаборатория сверхзвуковой аэродинамики.

Также в институте компьютерных исследований проводят значимые исследования по динамике твердого тела.

Это направление исследований института связано с анализом движения твердого тела с широким применением компьютерных методов.

Компьютерные исследования в динамике твердого тела относятся к отдельной области науки - компьютерной динамике, которая устанавливает общие закономерности движения систем при помощи различных численных методов и алгоритмов.

В сочетании с аналитическими методами, достижениями топологии, анализа, теории устойчивости и других методов компьютерная динамика применяется, главным образом, в исследовании интегрируемых задач, в частности, динамических проблем теории волчков. Такой подход позволяет получить достаточно полное представление о движении, разобраться во всем его многообразии и наглядно представить себе каждое конкретное движение и его особенности.

Помимо анализа интегрируемых ситуаций в институте начато исследование случаев хаотического поведения в динамике твердого тела. Эти исследования, которые ранее почти не проводились, основаны на широком применении высокоточного компьютерного моделирования. Ожидается, что изучение этой области динамики твердого тела позволит получить в перспективе много новых интересных результатов.

Кроме того, в институте проводятся исследования с использованием методов пуассоновой динамики и геометрии, теории групп и алгебр Ли - методов, которые во многом возникли из задач динамики твердого тела.

ВПО «ЧЕРЕПОВЕЦКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Факультет общих математических и естественнонаучных дисциплин Кафедра общей физики ЛАБОРАТОРНАЯ РАБОТА №23 Проверка основного закона динамики вращательного движения твердого тела относительно неподвижной оси выполнил: студент гр. 5СКб-11 Череповец, 2009/10 уч. Год проверил: ассис. Герасимов Р.А. Введение...

е является проблема лазерного охлаждения твердых тел. При комнатной температуре атомы и молекулы, из которых состоит воздух, двигаются в различных направлениях со скоростью около 4000км/час. Такие атомы и молекулы трудно изучать, потому что они слишком быстро исчезают из области наблюдения. Понижая температуру, можно уменьшить скорость, однако проблема состоит в том, что при охлаждении газы обычно...

МЕХАНИЧЕСКАЯ СИСТЕМА – это произвольный заранее выбранный набор материальных тел, поведение которых анализируется.

В дальнейшем будет использоваться следующее правило: В МАТЕМАТИЧЕСКИХ ВЫКЛАДКАХ ХАРКТЕРИСТИКИ МАТЕРИАЛЬНЫХ ТОЧЕК В ОТЛИЧИЕ ОТ ХАРАКТЕРИСТИК МАТЕРИАЛЬНЫХ ТЕЛ, БУДУТ ИМЕТЬ ИНДЕКС.

МАССА ТЕЛА – это сумма масс всех материальных точек, составляющих данное тело

ВНЕШНИЕ СИЛЫ – это силы взаимодействия материальных точек, включенных в механическую систему и не включенных.

ВНУТРЕННИЕ СИЛЫ – это силы взаимодействия материальных точек, включенных в механическую систему.

ТЕОРЕМА Д1 . Сумма внутренних сил механической системы всегда равна нулю .

Доказательство . Согласно аксиоме Д5, для любой пары материальных точек механической системы сумма сил их взаимодействия всегда равна нулю. Но все взаимодействующие точки принадлежат системе и, следовательно, любой из внутренних сил всегда найдется противодействующая внутренняя сила. Следовательно, полная сумма всех внутренних сил обязательно равна нулю. Ч.т.д.

ТЕОРЕМА Д2 .Сумма моментов внутренних сил механической системы всегда равна нулю .

Доказательство . Согласно аксиоме Д5, каждой внутренней силе найдется противодействующая внутренняя сила. Поскольку линии действия этих сил совпадают, то их плечи относительно любой точки пространства будут одинаковы и, следовательно, их моменты, относительно выбранной точки пространства по величине одинаковы, но знаки имеют разные, так как силы направлены противоположно. Следовательно, полная сумма моментов всех внутренних сил обязательно равна нулю. Ч.т.д.

ТЕОРЕМА Д3 .Произведение массы всей механической системы на ускорение ее центра масс равняется сумме всех внешних сил, действующих на систему.

Доказательство . Рассмотрим произвольную механическую систему, состоящую из конечного числа материальных тел. На основании аксиомы Д2 каждое тело можем разбить на конечное число материальных точек. Пусть всего получено n таких точек. Для каждой такой точки на основании аксиомы Д4 можно составить уравнение движения

Учитывая, что (КИНЕМАТИКА стр. 3), а также разбив все силы, действующие на i -ю точку, на внешние и внутренние, получим из предыдущего равенства

Если просуммировать уравнения движения всех точек системы, получим

Используя коммутативность операций суммирования и дифференцирования (фактически знаки суммирования и дифференцирования можно менять местами), получим

(40)

Выражение, полученное в скобках, может быть представлено через координату центра масс системы (СТАТИКА стр. 15)

где m – масса всей системы;

Радиус-вектор центра масс системы.

Как следует из теоремы Д1, последнее слагаемое в выражении (40) обращается в ноль, поэтому

или , ч.т.д. (41)

Следствие . Центр масс механической системы движется таким образом, как если бы он был материальной точкой, обладающей всей массой системы и к которой приведены все внешние силы .

Движение механической системы в отсутствие внешних сил

Теорема Д4. Если внешние силы, действующие на механическую систему, уравновешены в некотором направлении, то центр масс системы в этом направлении будет двигаться с постоянной скоростью.

Доказательство Х совпадала с направлением, в котором внешние силы уравновешены, т.е. сумма проекций внешних сил на ось Х равна нулю

Тогда, согласно теореме Д3

Так как , следовательно

Если проинтегрировать последнее выражение, то получим

ТЕОРЕМА Д5 . Если внешние силы, действующие на механическую систему, уравновешены в некотором направлении и в начальный момент система покоилась, то центр масс системы остается неподвижен все время движения.

Доказательство . Повторив рассуждения, приведенные в доказательстве предыдущей теоремы, получим, что скорость центра масс должна остаться такой же, какой она была в начальный момент, т.е. нулевой

Проинтегрировав это выражение, получим

ТЕОРЕМА Д6 . Если внешние силы, действующие на механическую систему, уравновешены в некотором направлении и в начальный момент система покоилась, то сумма произведений масс каждого из тел системы на абсолютное смещение его собственного центра масс в том же направлении равна нулю.

Доказательство . Выберем систему координат таким образом, чтобы ось Х совпадала с направлением, в котором внешние силы уравновешены или отсутствуют (F 1 , F 2 , …, F k на рис. 3), т.е. сумма проекций внешних сил на ось Х равна нулю

Точка С , положение которой определяется радиус-вектором:

называется центром масс системы материальных точек. Здесь m i - масса i -й частицы; r i - радиус-вектор, задающий положение этой частицы; - суммарная масса системы. (Отметим, что в однородном поле сил тяжести центр масс совпадает с центром тяжести системы.)

Продифференцировав r C по времени, найдем скорость центра масс:

где V i - скорость i -ой материальной точки, p i - ее импульс, P – импульс системы материальных точек. Из (2.18) следует, что суммарный импульс системы есть

P = mV C , (2.19)

Из (2.19) и (2.16), получим уравнение движения центра масс:

(а C – ускорение центра масс). Таким образом, из уравнения

следует, что центр масс движется так, как двигалась бы материальная точка с массой, равной массе системы, под действием результирующей всех внешних сил, приложенных к телам системы. Для замкнутой системы а C = 0. Это означает, что центр масс замкнутой системы движется прямолинейно и равномерно либо покоится .

Система отсчета, относительно которой центр масс покоится, называется системой центра масс (сокращенно ц- системой). Эта система является инерциальной.

Контрольные вопросы

1. В каких системах отсчета справедливы законы Ньютона?

2. Какие формулировки второго закона Ньютона вы знаете?

3. Чему равен вес свободно падающего тела?

4. Какой знак имеет скалярное произведение силы трения и скорости тела?

5. Чему равен импульс системы материальных точек в системе центра масс?

6. Чему равно ускорение центра масс тела, имеющего массу m и находящегося под действием сил ?

1. Пуля пробивает две примыкающие друг к другу коробки с жидкостями: вначале коробку с глицерином, затем такую же коробку с водой. Как изменится конечная скорость пули, если коробки поменять местами? Другими силами, действующими на пулю, кроме силы сопротивления жидкости F = rV , пренебречь.

2. Движение материальной точки задано уравнениями x = at 3 , y = bt.

3. Скорость материальной точки задана уравнениями u x = A ∙ sinwt ,u y = A ∙ coswt. Изменяется ли сила, действующая на точку: а) по модулю; б) по направлению?

4. Шарик, висящий на нити длиной l , после горизонтального толчка поднимается на, высоту H , не сходя с окружности. Может ли его скорость оказаться равной нулю: а) при H < l б) при H > l ?

5. Два тела массами т 1 > m 2 падают с одинаковой высоты. Силы сопротивления считать постоянными и одинаковыми для обоих тел. Сравнить время падения тел.

6. Два одинаковых бруска, связанные нитью, движутся по горизонтальной плоскости под действием горизонтальной силы F . Зависит ли сила натяжения нити: а) от массы брусков; б) от коэффициента трения брусков о плоскость?


7. Брусок массой m 1 = 1 кг покоится на бруске массой m 2 = 2 кг. На нижний брусок начала действовать горизонтальная сила, возрастающая пропорционально времени, ее модуль F = 3t (F – в Н, t – в с). В какой момент времени верхний брусок начнет проскальзывать? Коэффициент трения между брусками m = 0,1, трение между нижним бруском и опорой пренебрежимо мало. Принять g = 10 м/с 2 .

8. Два шарика а и б, подвешенные на нитях в общей точке0, равномерно движутся по круговым траекториям, лежащим в одной горизонтальной плоскости. Сравнить их угловые скорости.

9. Коническая воронка вращается с постоянной угловой скоростью w. Внутри воронки на стенке лежит тело, которое может свободно скользить вдоль образующей конуса. При вращении тело находится в равновесии относительно стенки. Является это равновесие устойчивым или неустойчивым?


Глава 3
Работа и энергия

Основной закон динамики можно записать в иной форме, зная понятие центра масс системы:

Это есть уравнение движения центра масс системы , одно из важнейших уравнений механики. Оно утверждает, что центр масс любой системы частиц движется так, как если бы вся масса системы была сосредоточена в этой точке и к ней были бы приложены все внешние силы .

Ускорение центра масс системы совершенно не зависит от точек приложения внешних сил.

Если , то , значит и - это случай замкнутой системы в инерциальной системе отсчета. Таким образом, если центр масс системы движется равномерно и прямолинейно, это означает, что её импульс сохраняется в процессе движения.

Пример: однородный цилиндр массы и радиуса скатывается без скольжения по наклонной плоскости, составляющей угол с горизонтом. Найти уравнение движения?

Совместное решение дает значение параметров

Уравнение движения центра масс совпадает с основным уравнением динамики материальной точки и является его обобщением на систему частиц: ускорение системы как целого пропорционально результирующей всех внешних сил и обратно пропорционально массе системы .

Систему отсчета, жестко связанную с центром масс, которая движется поступательно относительно ИСО называют системой центра масс. Ее особенностью является то, что полный импульс системы частиц в ней всегда равен нулю, так, как .

Конец работы -

Эта тема принадлежит разделу:

Кинематика поступательного движения

Физические основы механики.. кинематика поступательного движения.. механическое движение формой существования..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Механическое движение
Материя, как известно, существует в двух видах: в виде вещества и поля. К первому виду относятся атомы и молекулы, из которых построены все тела. Ко второму виду относятся все виды полей: гравитаци

Пространство и время
Все тела существуют и движутся в пространстве и времени. Эти понятия являются основополагающими для всех естественных наук. Любое тело имеет размеры, т.е. свою пространственную протяженность

Система отсчета
Для однозначного определения положения тела в произвольный момент времени необходимо выбрать систему отсчета - систему координат, снабженнуя часами и жестко связаннуя с абсолютно твердым телом, по

Кинематические уравнения движения
При движении т.М ее координаты и меняются со временем, поэтому для задания закона движения необходимо указать вид фун

Перемещение, элементарное перемещение
Пусть точка М движется от А к В по криволинейному пути АВ. В начальный момент ее радиус-вектор равен

Ускорение. Нормальное и тангенциальное ускорения
Движение точки характеризуется также ускорением-быстротой изменения скорости. Если скорость точки за произвольное время

Поступательное движение
Простейшим видом механического движения твердого тела является поступательное движение, при котором прямая, соединяющая любые две точки тела перемещается вместе с телом, оставаясь параллельной| сво

Закон инерции
В основе классической механики лежат три закона Ньютона, сформулированные им в сочинении «Математические начала натуральной философии», опубликованном в 1687г. Эти законы явились результатом гениал

Инерциальная система отсчета
Известно, что механическое движение относительно и его характер зависит от выбора системы отсчета. Первый закон Ньютона выполняется не во всех системах отсчета. Например, тела, лежащие на гладком п

Масса. Второй закон Ньютона
Основная задача динамики заключается в определении характеристик движения тел под действием приложенных к ним сил. Из опыта известно, что под действием силы

Основной закон динамики материальной точки
Уравнение описывает изменение движения тела конечных размеров под действием силы при отсутствии деформации и если оно

Третий закон Ньютона
Наблюдения и опыты свидетельствуют о том, что механическое действие одного тела на другое является всегда взаимодействием. Если тело 2 действует на тело 1, то тело 1 обязательно противодействует те

Преобразования Галилея
Они позволяют определить кинематические величины при переходе от одной инерциальной системы отсчета к другой. Возьмем

Принцип относительности Галилея
Ускорение какой-либо точки во всех системах отсчета, движущихся друг относительно друга прямолинейно и равномерно одинаково:

Сохраняющиеся величины
Любое тело или система тел представляют собой совокупность материальных точек или частиц. Состояние такой системы в некоторый момент времени в механике определяется заданием координат и скоростей в

Центр масс
В любой системе частиц можно найти точку, называемую центром масс

Консервативные силы
Если в каждой точке пространства на частицу, помещенную туда, действует сила, говорят, что частица находится в поле сил, например в поле сил тяжести, гравитационной, кулоновской и других сил. Поле

Центральные силы
Всякое силовое поле вызвано действием определенного тела или системы тел. Сила, действующая на частицу в этом поле об

Потенциальная энергия частицы в силовом поле
То обстоятельство, что работа консервативной силы (для стационарного поля) зависит только от начального и конечного положений частицы в поле, позволяет ввести важное физическое понятие потенциально

Связь между потенциальной энергией и силой для консервативного поля
Взаимодействие частицы с окружающими телами можно описать двумя способами: с помощью понятия силы или с помощью понятия потенциальной энергии. Первый способ более общий, т.к. он применим и к силам

Кинетическая энергия частицы в силовом поле
Пусть частица массой движется в силов

Полная механическая энергия частицы
Известно, что приращение кинетической энергии частицы при перемещении в силовом поле равно элементарной работе всех сил, действующих на частицу:

Закон сохранения механической энергии частицы
Из выражения следует, что в стационарном поле консервативных сил полная механическая энергия частицы может изменяться

Кинематика
Поворот тела на некоторый угол можно

Момент импульса частицы. Момент силы
Кроме энергии и импульса существует ещё одна физическая величина, с которой связан закон сохранения - это момент импульса. Моментом импульса частицы

Момент импульса и момент силы относительно оси
Возьмем в интересующей нас системе отсчета произвольную неподвижную ось

Закон сохранения момента импульса системы
Рассмотрим систему, состоящую из двух взаимодействующих частиц, на которые действуют также внешние силы и

Таким образом, момент импульса замкнутой системы частиц остается постоянным, не изменяется со временем
Это справедливо относительно любой точки инерциальной системы отсчета: . Моменты импульса отдельных частей системы м

Момент инерции твердого тела
Рассмотрим твердое тело, которое мож

Уравнение динамики вращения твердого тела
Уравнение динамики вращения твердого тела можно получить, записав уравнение моментов для твердого тела, вращающегося вокруг произвольной оси

Кинетическая энергия вращающегося тела
Рассмотрим абсолютно твердое тело, вращающееся вокруг неподвижной оси, проходящей через него. Разобьем его на частицы с малыми объемами и массами

Работа вращения твердого тела
Если тело приводится во вращение силой

Центробежная сила инерции
Рассмотрим диск, который вращается вместе с шариком на пружине, надетой на спицу, рис.5.3. Шарик находится

Сила Кориолиса
При движении тела относительно вращающейся СО, кроме, появляется ещё одна сила-сила Кориолиса или кориолисова сила

Малые колебания
Рассмотрим механическую систему, положение которой может быть определено с помощъю одной величины, например х. В этом случае говорят, что система имеет одну степень свободы.Величиной х может быть

Гармонические колебания
Уравнение 2-го Закона Нъютона в отсутствие сил трения для квазиупругой силы вида имеет вид:

Математический маятник
Это материальная точка, подвешенная на нерастяжимой нити длиною, совершающая колебания в вертикальной плоск

Физический маятник
Это твердое тело, совершающее колебания вокруг неподвижной оси, связанной с телом. Ось перпендикулярна рисунку и нап

Затухающие колебания
В реальной колебательной системе имеются силы сопротивления, действие которых приводят к уменьшению потенциальной энергии системы, и колебания будут затухающими.В простейшем случае

Автоколебания
При затухающих колебаниях энергия системы постепенно уменьшается и колебания прекращаются. Для того, чтобы их сделать незатухающими, необходимо пополнять энергию системы извне в определенные момент

Вынужденные колебания
Если колебательная система, кроме сил сопротивления, подвергается действию внешней периодической силы, изменяющейся по гармоническому закону

Резонанс
Кривая зависимости амплитуды вынужденых колебаний от приводит к тому, что при некоторой определенной для данной систе

Распространение волн в упругой среде
Если в каком либо месте упругой среды (твёрдой, жидкой, газообразной) поместить источник колебаний, то из-за взаимодействия между частицами колебание будет распространяться в среде от частицы к час

Уравнение плоской и сферической волн
Уравнение волны выражает зависимость смещения колеблющейся частицы от ее кординат,

Волновое уравнение
Уравнение волны является решением дифференциального уравнения, называемого волновым. Для его установления найдем вторые частные производные по времени и координатам от урав



Похожие статьи